收藏 分销(赏)

高中化学专题之粒子间作用力与晶体知识点总结.docx

上传人:小****库 文档编号:332711 上传时间:2023-08-25 格式:DOCX 页数:9 大小:22.82KB
下载 相关 举报
高中化学专题之粒子间作用力与晶体知识点总结.docx_第1页
第1页 / 共9页
高中化学专题之粒子间作用力与晶体知识点总结.docx_第2页
第2页 / 共9页
点击查看更多>>
资源描述
粒子间作用力  1.共价分子之间都存在着分子间作用力,它是能把分子聚集在一起的力,包括范德华力和氢键。其实质是一种静电作用。  2.范德华力:一种普遍存在于固体、液体和气体之间的作用力,又称分子间作用力。  (1)大小:一般是金属键、离子键和共价键的1/10或1/100左右,是一种较弱的作用力,如干冰易液化,碘易升华的原因。  (2)影响范德华力大小的因素:分子的空间构型及分子中电荷的分布是否均匀等,对于组成和结构相似的分子,其范德华力一般随着相对分子质量的增大而增大,如卤族元素单质范德华力:F2<Cl2<Br2<I2。  (3)范德华力对物质物理性质的影响:  熔沸点:对于组成和结构相似的分子,相对分子质量越大,物质的熔沸点越高(除H2O、HF、NH3)。  例如:烷烃(CnH2n+2)的熔沸点随着其相对分子质量的增加而增加,也是由于烷烃分子之间的范德华力增加所造成的。  溶解度:溶剂与溶质分子间力越大,溶质的溶解度越大。例如:273 K,101 kPa时,氧气在水中的溶解量(0.049 cm3·L-1)比氮气的溶解量(0.024 cm3·L-1)大,  就是因为O2与水分子之间的作用力比N2与水分子之间的作用力大所导致的。  3.氢键 (1)当氢原子与电负性大的X原子以共价键结合时,它们之间的共用电子对强烈偏向X,使H几乎成了“裸露的质子”, 这样相对显正电性的H与另一分子相对显负电性的X中的孤电子对接近并产生相互作用,这种相互作用称为氢键。 (2)氢键的存在:在X—H…Y这样的表示式中,X、Y代表电负性大而原子半径小的非金属原子,如F、O、N,氢键既可以存在于分子之间又可以存在于分子内部。 (3)氢键的大小:是化学键的1/10或1/100左右,比范德华力强。 (4)对物质物理性质的影响  ①熔沸点:组成和结构相似的物质,当分子间存在氢键时,熔沸点较高。  而分子内存在氢键时,对熔沸点无影响。  如邻羟基苯甲酸因形成分子内氢键,其熔点(159 ℃)低于易形成分子间氢键的对羟基苯甲酸的熔点(213 ℃)。再如,相对分子质量相近的尿素、醋酸、硝酸的熔点依次降低的原因也是如此。  ②溶解度:溶剂和溶质分子间存在氢键时,溶质的溶解度增大,如NH3、C2H5OH、CH3COOH等。  (5)氢键有饱和性、方向性:一般X—H…Y中三原子在同一直线上(这样形成氢键最强)。如:  例如:水结冰体积膨胀,是因为冰中所有水分子以有方向性和饱和性的氢键互相联结成晶体,而液态水中是多个水分子以氢键结合成(H2O)n。   晶体类型17个重要知识  1、晶体类型判别:  分子晶体:大部分有机物、几乎所有酸、大多数非金属单质、所有非金属氢化物、部分非金属氧化物。  原子晶体:仅有几种,晶体硼、晶体硅、晶体锗、金刚石、金刚砂(SiC)、氮化硅(Si3N4)、氮化硼(BN)、二氧化硅(SiO2)、氧化铝(Al2O3)、石英等;  金属晶体:金属单质、合金;  离子晶体:含离子键的物质,多数碱、大部分盐、多数金属氧化物;   分子晶体、原子晶体、金属晶体、离子晶体对比表 晶体类型 分子晶体 原子晶体 金属晶体 离子晶体 定    义 分子通过分子间作用力形成的晶体 相邻原子间通过共价键形成的立体网状结构的晶体 金属原子通过金属键形成的晶体 阴、阳离子通过离子键形成的晶体 组成晶体的粒子 分  子 原  子 金属阳离子 和自由电子 阳离子和 阴离子 组成晶体粒子间的相互作用 范德华力或氢键 共价键 金属键(没有饱和性方向性) 离子键(没有饱和性方向性) 典型实例 冰(H2O)、P4、I2、干冰(CO2)、S8 金刚石、晶体硅、SiO2、SiC  Na、Mg、 Al、Fe NaOH、NaCl、K2SO4 特         征 熔点、 沸点 熔、沸点较低 熔、沸点高   一般较高、 部分较低 熔、沸点较高 导热性 不  良 不  良 良  好 不  良 导电性 差,有些溶 于水可导电 多数差 良  好 固态不导电, 熔化或溶于水能导电 机械加 工性能 不  良 不  良 良  好 不  良 硬 度 硬度较小 高硬度 一般较高、部分较低 略硬而脆 溶解性 相似相溶 不  溶 不溶,但有的反应 多数溶于水,难溶于有机溶剂   3、不同晶体的熔沸点由不同因素决定:  离子晶体的熔沸点主要由离子半径和离子所带电荷数(离子键强弱)决定,分子晶体的熔沸点主要由相对分子质量的大小决定,原子晶体的熔沸点主要由晶体中共价键的强弱决定,且共价键越强,熔点越高。   4、金属熔沸点高低的比较:   (1)同周期金属单质,从左到右(如Na、Mg、Al)熔沸点升高。   (2)同主族金属单质,从上到下(如碱金属)熔沸点降低。   (3)合金的熔沸点比其各成分金属的熔沸点低。  (4)金属晶体熔点差别很大,如汞常温为液体,熔点很低(-38.9℃),而铁等金属熔点很高(1535℃)。 5、原子晶体与金属晶体熔点比较 原子晶体的熔点不一定都比金属晶体的高,如金属钨的熔点就高于一般的原子晶体。 6、分子晶体与金属晶体熔点比较  分子晶体的熔点不一定就比金属晶体的低,如汞常温下是液体,熔点很低。 7、判断晶体类型的主要依据? 一看构成晶体的粒子(分子、原子、离子); 二看粒子间的相互作用; 另外,分子晶体熔化时,化学键并未发生改变,如冰→水。 8、化学键 化学变化过程一定发生就化学键的断裂和新化学键的形成,但破坏化学键或形成化学键的过程却不一定发生化学变化,如食盐的熔化会破坏离子键,食盐结晶过程会形成离子键,但均不是化学变化过程。 9、判断晶体类型的方法? (1)依据组成晶体的微粒和微粒间的相互作用判断 ① 离子晶体的构成微粒是阴、阳离子,微粒间的作用力是离子键。 ② 原子晶体的构成微粒是原子,微粒间的作用力是共价键。 ③ 分子晶体的构成微粒是分子,微粒间的作用力是分子间作用力。 ④ 金属晶体的构成微粒是金属阳离子和自由电子,微粒间的作用力是金属键。  (2)依据物质的分类判断  ① 金属氧化物(如K2O、Na2O2等)、强碱(如NaOH、KOH等)和绝大多数的盐类是离子晶体。  ② 大多数非金属单质(除金刚石、石墨、晶体硅、晶体硼外)、气态氢化物、非金属氧化物(除SiO2外)、酸、绝大多数有机物(除有机盐外)是分子晶体。  ③ 常见的原子晶体单质有金刚石、晶体硅、晶体硼等,常见的原子晶体化合物有碳化硅、二氧化硅等。  ④ 金属单质(除汞外)与合金是金属晶体。  (3)依据晶体的熔点判断  ① 离子晶体的熔点较高,常在数百至一千摄氏度。  ② 原子晶体的熔点高,常在一千至几千摄氏度。  ③ 分子晶体的熔点低,常在数百摄氏度以下至很低温度。  ④ 金属晶体多数熔点高,但也有相当低的。  (4)依据导电性判断 ① 离子晶体的水溶液及熔化时能导电。 ② 原子晶体一般为非导体。 ③ 分子晶体为非导体,而分子晶体中的电解质溶于水,使分子内的化学键断裂形成自由离子也能导电。 ④ 金属晶体是电的良导体。  (5)依据硬度和机械性能判断 ① 离子晶体硬度较大或较硬、脆。  ② 原子晶体硬度大。  ③ 分子晶体硬度小且较脆。  ④ 金属晶体多数硬度大,但也有较小的,且具有延展性。  (6)判断晶体的类型也可以根据物质的物理性质:  ① 在常温下呈气态或液态的物质,其晶体应属于分子晶体(Hg除外),如H2O、H2等。  对于稀有气体,虽然构成物质的微粒为原子,但应看作单原子分子,因为微粒间的相互作用力是范德华力,而非共价键。  ② 固态不导电,在熔融状态下能导电的晶体(化合物)是离子晶体。如:NaCl熔融后电离出Na+和Cl-,能自由移动,所以能导电。  ③ 有较高的熔、沸点,硬度大,并且难溶于水的物质大多为原子晶体,如晶体硅、二氧化硅、金刚石等。  ④ 易升华的物质大多为分子晶体。  ⑤ 熔点在一千摄氏度以下无原子晶体。  ⑥ 熔点低,能溶于有机溶剂的晶体是分子晶体。  10、晶体熔沸点高低的判断?  (1)不同类型晶体的熔沸点:原子晶体>离子晶体>分子晶体;金属晶体(除少数外)>分子晶体;金属晶体熔沸点有的很高,如钨,有的很低,如汞(常温下是液体)。  (2)同类型晶体的熔沸点:  ① 原子晶体:结构相似,半径越小,键长越短,键能越大,熔沸点越高。如金刚石>氮化硅>晶体硅。  ② 分子晶体: 组成和结构相似的分子,相对分子质量越大,分子间作用力越强,晶体熔沸点越高。如CI4>CBr4>CCl4>CF4。  若相对分子质量相同,如互为同分异构体,一般支链数越多,熔沸点越低,特殊情况下分子越对称,则熔沸点越高。  若分子间有氢键,则分子间作用力比结构相似的同类晶体强,故熔沸点特别高。  ③ 金属晶体:所带电荷数越大,原子半径越小,则金属键越强,熔沸点越高。如Al>Mg>Na>K。  ④ 离子晶体:离子所带电荷越多,半径越小,离子键越强,熔沸点越高。如KF>KCl>KBr>KI。  11、Na2O2  Na2O2的阴离子为O22-,阳离子为Na+,故晶体中阴、阳离子的个数比为1:2。  12、堆积方式  离子晶体中,阴、阳离子采用不等径密圆球的堆积方式。  13、稳定性  分子的稳定性是由分子中原子间化学键的强弱决定。  14、冰的熔化  冰是分子晶体,冰融化时破坏了分子间作用力和部分氢键,化学键并未被破坏。  15、离子晶体熔化  离子晶体熔化时,离子键被破坏而电离产生自由移动的阴阳离子而导电,这是离子晶体的特征。  16、离子晶体特例  ① 离子晶体不一定都含有金属元素,如NH4Cl  ② 离子晶体中除含离子键外,还可能含有其他化学键, 如NaOH、Na2O2  17、非离子晶体特例  ① 溶于水能导电的不一定是离子晶体,如HCl等  ② 熔化后能导电的晶体不一定是离子晶体,如Si、石墨、金属等。  ③ 金属元素与非金属元素构成的晶体不一定是离子晶体,如AlCl3是分子晶体。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中化学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服