1、山东工商学院2016届毕业论文目 录引言I1 绪论31.1 HFSS简介31.1.1 HFSS发展历程31.1.2HFSS仿真原理31.1.3HFSS的仿真过程41.1.4HFSS的功能51.2应用领域51.3HFSS的基本操作51.3.1HFSS的一般仿真操作51.3.2HFSS的一般操作界面62 微带天线理论82.1微带天线82.1.1传输线即微带天线82.1.2微带贴片天线92.2圆形微带贴片天线理论102.3极化理论122.3.1圆极化理论简述122.3.2左旋圆极化与右旋圆极化133 贴片天线的仿真过程143.1实验内容143.2HFSS贴片天线仿真143.2.1创建工程143.2.
2、2创建模型153.3设置参量223.3.1设置变量223.3.2设置模型材料参数233.3.3设置边界条件和激励源243.3.4设置求解条件253.4创建参数分析并求解263.4.1添加参数设置263.4.2定义输出变量273.4.3求解273.5优化求解283.5.1选择优化变量283.5.2设置远区辐射场283.5.3添加优化设置283.5.4求解优化分析294 结果演示与分析294.1贴片天线的仿真结果294.1.1贴片天线的仿真结果294.1.2贴片天线的仿真结果分析29引言发 生多撒飞洒发多少我都发范德萨范德萨分到达发到付啊放大但是的但是上的放大放大飞机返回来烦你的经费户附近的看是否
3、就安分点积分激发你觉得离开谁惹你北京网络法律能发奶粉就发觉你废物了南方vfjdklafnlfefjdalfn费劲儿了奶粉就为了你附近的少年富放你家里是南方金额女王1 绪论1.1 HFSS简介电磁场学科是围绕麦克斯韦方程组为中心展开的研究。电磁场本身属于人肉眼所见的范围之外,因此,特别是在早年科学技术还不发达的时候,要想研究人们看不见也摸不着的电磁场来说首要解决的问题就是怎么实现电磁场的可视化。1.1.1 HFSS发展历程HFSS(High Fequency Structure Simulator高频电磁场仿真)。该软件是由美国Ansoft公司开发!(1)的世界上第一个商业化的三维结构电磁场仿真
4、软件,当然,该仿真软件并不是唯一一个电磁场仿真软件,但却是世界上公认的主流的三维电磁场仿真软件。当然最开始出现的HFSS软件并不是由美国Ansoft公司多研发,HFSS软件的前身是美国著名的安捷伦公司设计的高频结构仿真软件(Agilent HFSS)。2003年美国Ansoft公司收购了Agilent HFSS软件并经过自研发和升级,推出了HFSS的V8.0版本。该版本增加了许多新的功能。功能的增加使HFSS得运用跟为广泛,深得客户的喜爱。当然这并没有停止HFSS发展的脚步。同年5月美国Ansoft公司发布了HFSS的新版本V9.0,发布不久,同年由发布的更新版本V9.2。直到2005年,经过
5、美国Ansoft公司不断地创新和努力,他们推出了HFSS的最高版本即V10.0。最新版本与之前的版本相比,大大增加了软件的设计和分析效率,强化了该软件与其他工具的配合。同时版本V10.0还推出了一种新功能,俗称“Heal-ing”功能。该功能具有能消除微小段差和坐标误差的功能,能够直接使用为大多数的CAD模型,大大拓宽了HFSS的运用范围。1.1.2HFSS仿真原理HFSS采用的仿真原理是基于限元法!而来的。对于有限元法的理解我们可以借助数学里的“微分法”。当我们面临一项非常庞大而又复杂的问题时,我们一般倾向于将这巨大的问题分割成为一块一块的细小的问题,尽量分的非常细致,最好能够保证每块细小的
6、区域所解决的问题尽量简化。当我们对每个小区域的分析变得越来越简化之后,最后将所有小区域的计算结果整合起来,构成一个用整体矩阵表达整个区域的解,而这个矩阵往往又是我们所熟知的稀疏矩阵。然而,到这一步的时候,我们的计算过程已经变得非常简化并且迅速了。1.1.3HFSS的仿真过程HFSS的一般仿真过程!如图1.1所示:图1.1 HFSS仿真过程1.1.4HFSS的功能HFSS的主要功能!(4)有以下几点:(1) 能够实现三维电磁场的设计与分析调试;(2) 拥有强大的参数化设计、优化、敏感性级公差统计访问功能;(3) 具有灵活的网格剖分,收敛精度,以及仿真分析控制等强大的功能;(4) 仿真快速且设计精
7、度高,仿真便捷;(5) 具有电磁场与系统电路的集成协同仿真能力。1.2应用领域 从2003年以来,由于市场竞争的激烈,HFSS的发展越来越迅速,同时HFSS的功能越来越强大,软件的运用范围已得到了扩大。(1) 射频和微波无源器件的设计;(2) 高速PCB板和RF PCB板的设计;(3) 天线、阵列天线和馈源的设计;(4) 高频IC设计;(5) 高速封装设计;(6) 电真空器件涉及!(5)。1.3HFSS的基本操作1.3.1HFSS的一般仿真操作HFSS的基本操作以下七个步骤:(1) 创建工程,工程的文件一般格式为*.hfss;(2) 多种模型视图。模型视图一般包括多种,如:移动、旋转、放大、缩
8、小。同时还要注意适中显示快捷键为:Ctrl+D;(3) 复制、粘贴;(4) 各种HFSS文件,一个*.hfss文件包含许多工程相关文件。常见的文件包括以下几种格式:Design_name.保存设计的结果数据;Project_name.保存工程的结果数据;Project_name.保存工程的场数据结果。(5) 导出文件;(6) 导出矩阵数据;(7) 导入文件。1.3.2HFSS的一般操作界面(1)菜单栏,如图1.2所示:图1.2 HFSS仿真环境的菜单栏(2)工程树,如图1.3所示:图1.3 HFSS仿真环境的工程树(3)绘图历史树,如图1.4所示:图1.4 HFSS仿真环境的绘图历史树(4)信
9、息管理栏,如图1.5所示:图1.5 HFSS仿真环境的信息管理栏(5)3D仿真模块,如图1.6所示:图1.6 HFSS仿真环境中的3D仿真模块2 微带天线理论2.1微带天线2.1.1传输线即微带天线 微波理论中的传输线不是我们平常意义上认为的作为载体的传输线,在微波理论中,传输线不仅起到了作为传输载体的作用还能够沿着固定的反向传输电磁场,从而起到了控制电磁场传播方向的作用。传输线包括:(1)TEM波传输线;(2)TE波和TM波传输线;(3)表面波传输线!(6)。其中在表面波传输线的大范围中,再根据所传输的电磁场的频率大小划分,传输线所传输的电磁场在厘米波段的话则称其为微带线。早年的电磁波的传输
10、一般使用最常见的传输线,微带天线的出现并不算太早,也就是20世纪70年代的时候,距离现在仅仅五十年的时间。微带天线在当时作为一种新型天线出现在人们的视眼内。并且,因为其集成技术和介质的基片材料发展并不完善。微带天线在当时来说并不占优势。随着市场的需要,以及科学家们不断的创新与努力。微带天线才慢慢在市场上站住脚跟为大多数人所熟知。微带天线的使用虽受到各种限制,但其实质上的优点是不可磨灭的。下面简单列举其三个明显的优点:(1)体积微小,质量很轻,剖面很薄。将其安装在载体表面,对载体来说非常轻巧无负担。且由于其体积微小的原因,天线的隐形效果也很好,不影响再提美观。(2)电性能多样化.不同设计的微带元
11、,其最大辐射方向可以从边射到端射范围内调整,易于得到各种极化,特殊设计的微带元还可以在双频或多频工作。(3)能和有源器件、电路集成为统一的组件,因此适合大规模生产,简化了整体的制作和调试,大大降低了成本。和其它天线相比,它也有一些缺点:(1)相对带宽较窄,主要是谐振型微带天线。现在已经有一些改进方法。(2)损耗较大,因此效率较低,这类似于微带电路。特别是行波型微带天线,在匹配负载上有较大的损耗。(3)单个微带天线的功率容量较小。(4)介质基片对性能影响大。由于工艺条件的限制,批量生产的介质基片的均匀性和一致性还有欠缺,这影响了微带天线的批量生产和大型天线阵的构建。微带天线的优点远远超过了它的缺
12、点,再加上微带天线的实验方法和计算方法都己非常成熟,这就为克服微带天线的缺点奠定了基础。微带天线的优点使微带天线的发展进一步加速,目前在卫星通信、雷达、遥感、导弹、遥测遥控、环境监测、生物医学、便携式无线设备等方面已得到广泛的推广和运用。2.1.2微带贴片天线微带贴片天线是由介质基片、在基片一面上有任意平面几何形状的导电贴片和基片另一面上的地板所构成。实际上,能计算其辐射特性的贴片图形是有限的,圆形、正方形、矩形、椭圆形、五角形、圆环形、正三角形、半圆形。下图为一实际生活中的贴片天线,如图2.1所示:图2.1 实际生活中的贴片天线2.2圆形微带贴片天线理论 圆形贴片天线入图2.2下所示:图2.
13、2 圆心贴片天线 若圆形贴片天线的馈电点为(),可得其谐振电阻为: (2-1)其中,而,为辐射功率; 为导体损耗功率; 为介质损耗功率。通过导出,即可导出谐振电阻,即: / (2-2)其中为传播的电磁场的频率,单位为GHz,而为:(2-3)若圆形贴片的金属化层为铜导体,则其品质因数为: (2-4)其中h的单位是cm,f的单位是GHz。谐振电路的谐振频率为: (2-5)其中为圆形贴片的等效半径,即: (2-6) (2-7)其中为圆形贴片的等效动态电容定义的动态介电常数,而为: (2-8) (2-9)其中为用圆形贴片天线的等效静态电容的介电常数,为: (2-10)2.3极化理论 本身认为电磁波的场
14、强的方向与与时间的变化无关,而有些时候电磁波在传播过程中波的场强的方向可能随时间按一定的规律变化,此即称为电磁波的极化。电场强度的方向随时间的变化即称为电磁波的极化(polarization),而在物理学之中,称其为偏振。对于电磁波的极化我们一般分为一下三种类型:(1)线极化;(2)圆极化;(3)椭圆极化!(7)。线极化和椭圆极化这里就不再过多的赘述了。下面着重讲讲圆极化。2.3.1圆极化理论简述 现有一沿z方向传播的平面波,同时该电磁波的电场分量应该有x和y方向,其瞬时值表示为: (2-11)上式中所写出的: (2-12)当上式中的,由上式可得: (2-13)显然该方程满足我们平时都了解的园
15、的标准方程,由此就有:(2-14)这说明会受到时间t得影响。因而的矢量的轨迹满足一个标准的圆形方程,因此称其为圆极化。2.3.2左旋圆极化与右旋圆极化 上篇简单叙述的圆极化的理论,这里我们着重看看圆极化的分类。在圆极化的范畴内,又分为一下两种:(1)左旋圆极化;(2)右旋圆极化。所谓左旋圆极化即指电场的y分量的相位超前于电场的x分量的相位刚好,此时的旋转方向与波的传播方向成左手螺旋关系,该情况则成为左旋圆极化(LHCP)。相反的情况,电场的y分量的相位落后于电场的x分量的相位刚好,此时的旋转方向与波的传播方向成右手螺旋关系,该情况则成为右旋圆极化(RHCP)。简易的圆极化图像如图2.3所示:图
16、2.3 圆极化简介3 贴片天线的仿真过程3.1实验内容本实验选择建立、求解、分析一个右手圆极化贴片天线,贴片天线的工作频率为2.4GHz,测量其S参数。贴片天线的切角大小对贴片天线的性能具有一定的影响。因此,实验内容除了包括对贴片天线的仿真以外,再加上一个要求:调节仿真的贴片天线中一些参数以及切角的大小,对贴片天线的轴比参数进行优化,并记录最终的优化结果。3.2HFSS贴片天线仿真3.2.1创建工程 首先打开HFSS创建工程。打开HFSS并保存新工程,命其名为Ex5_zhl插入HFSS设计,然后选择求解类型。求解类型一般分为三种:(1)模式驱动求解;(2)终端驱动求解;(3)本征模求解。一般选
17、择Driven Modal类型。设置3D模型中的单位(一般为mm)。那么我们的第一步骤就完成了3.2.2创建模型(1)首先第一步绘制基片。即在软件中绘制一个长方体,并设置好长方体各个定点的基坐标本实验设置其基坐标(x,y,z)为(-22.5,-22.5,0)。在该实验中,实验矩形基片选择的边长度(dx,dy,dz)为(45,45,5)单位为之前设定好的毫米单位,全部设置完之后按下enter键确认。设定完矩形基片之后再定义长方体属性将长方体命名为substrate,并利用transparent的数值条来调节矩形基片的透明度。本实验需要提高其透明度,因此将transparent的数值条调节为0.8
18、,此时实验图稿如图3.1所示:图3.1 基片 (2)下一步绘制接地板。同样接地板也是一个矩形,本实验设置其基坐标(x,y,z)为(-45,-45,0),然后设置其三边长度(dx,dy,dz)为(90,90,0)数据输入时用tab键,全部数据都确认无误的输入之后按下enter 键确定。同样建立好该矩形接地板之后,我们还需要定义接地板的属性。在3D模型框的左边会自动弹出属性对话框,我们就依据框内的项目来依次设置。将name栏改为groundplane,同样利用transparent的数值条来提高接地板的透明度。此时实验图稿如图3.2所示:图3.2 接地板(3)绘制贴片天线。首先,再建立一个矩形,我
19、们设置其基坐标为(x,y,z)为(-16,-16,5),矩形的边长度设置为(32,32,0),同样设置其属性。Name改为patch,transparent同样也设置成0.8。此时实验图稿如图3.3所示:图3.3 贴片天线(4)绘制馈电点。绘制馈电点则与之前的绘制矩形不同,现在我们要绘制一个圆柱体。选择要绘制的图形之后,按下tab键来设置其参数。这里设置圆柱体的圆心极坐标为(x,y,z)为(0,8,0),再输入圆柱体的(dx,dy,dz)为(0.5,0,5).该参数表明此圆柱体半径r=0.5mm,高为h=5mm,输入完相应参数之后按下enter 键。同样我们也要设置该圆柱体的基本属性。将其na
20、me命名为feed,并将其透明度提高到0.8。此时实验图稿如图3.4所示:图3.4 馈电点(5)绘制空气腔体。这里的空气腔体也是一个矩形腔体。因此我们的步骤和前几个步骤都是相同的,这里就不再过多赘述了。但是有一点还是要强调,即该矩形的基坐标(x,y,z)设定为(-80,-80,-35),而该矩形的三边长度为(dx,dy,dz)设定为(160,160,75)。在属性的设定中,将其name 设定为airbox,transparent透明度同样提高到0.8。此时实验图稿如图3.5所示:图3.5 空气腔体(6)绘制端口。这里的端口是一个圆形。同样用以上的方法,按下tab键设置其圆心坐标(x,y,z)为
21、(0,8,0),在设置(dx,dy,dz)为(1.5,0,0),这样设置说明该圆半径为1.5mm,按下enter 键确认定义其属性name为port,透明度定义为0.8。此时实验图稿如图3.6所示:图3.6 端口接下来我们要裁截掉端口处的穿孔。找到三维模拟图像左端的绘图历史树,同时选中groundplane和port项。在主菜单中选择Modeler/Boolean/Substract,在弹出的对话框中确定groundplane向在blank parts列,确定port项在tool parts列,勾选clone tool objects before subtracting项,点击确认以后则下接
22、地板中裁去了和端口大小相同的洞,但任然保留端口。此时实验图稿如图3.7所示:图3.7 裁端口(7)绘制切角。由主菜单选择draw/line,按下tab键设定参数,设定第一个点坐标(x,y,z)为(0,0,0),接着设定第二个坐标点(x,y,z)为(6,0,0),按下tab键设定第三个坐标点(x,y,z)为(0,6,0),最后再次按下tab 键输入最后一个闭合点的坐标为(x,y,z)为(0,0,0)使曲线闭合。画好曲线之后,我们同样要定义其属性。Name 为chamcut1,tranaparent的设置和前面一样,同样也是0.8。此时实验图稿如图3.8所示:图3.8 切角下一步我们准备移动多边形
23、。在绘图历史树中选中chamcut1项,由主菜单选择edit/arrange/move,按下tab 键再次回到参数设置区。将位移矢量的起点坐标(x,y,z)设定为(0,0,0),再输入矢量方向的大小(dx,dy,dz)设定为(-16,-16,5),按下确认键。此时实验图稿如图3.9所示:图3.9 移动切角接着尝试复制该多边形,并将其位置移到其所在矩形的对角定点处。在绘制历史树中选择chamcut1项,由主菜单选择edit/duplicate/around axis,在弹出的设置框中的axis项选择Z,在angel项输入180deg,在total number项输入2,点击确认,即成功复制添加了
24、一个多边形。此时实验图稿如图3.10所示:图3.10 复制切角最后我们从贴片天线中裁去切角。方法类似于第六步的最后部分,在这里就不过多赘述了。不过这里有一点要强调,在第六步中,当对话框弹出来了以后,我们选择勾选clone tool objects before subtracting项,而这里我们不能勾选,因为被裁掉的两块切角正好不需要保留,因此,不选择勾选clone tool objects before subtracting项。此时实验图稿如图3.11所示:图3.11 裁去切角3.3设置参量3.3.1设置变量(1)再接地板中设置变量。(2)在基片中设置变量。(3)在贴片天线中设置变量。(
25、4)在馈电点中设置变量。(5)在端口中设置变量。(6)在切角中设置变量。关于设置变量的问题,前面六个步骤都很相似,在这里不再一一赘述。从总结的角度来讲,所有的设置变量的步骤都可归结为一种方法。首先,在绘图历史树中,找到你所要设置的对象(该对象一般在该模块名字一下展开项中的第一项),选中该项以后,用鼠标点击右键,选中Properties项。进入新的属性框中,此时一般修改项为Position 项,将其三维数字一次按照要求进行修改,并定义变量的数值(注意单位)确认修改无误之后,点击确定。此时将position下排的xsize和ysize也一并修改,同样也定义其数值(再次提醒!同样也要注意单位)。(7
26、)修改切角的位移矢量。在绘图历史树中,展开patch/subtract/move节点,双击move项,将弹出的属性窗口中的move vector项改为patchstart,patchstart,subheight。(8)建立变量联系。在工程历史树上选择antenna,并点击右键,选择design properties,在弹出的属性框中的variables标签页中,将glanestart项改为-glanesize/2,将substart项设置为-subsize/2,将patchstart项设为-patchsize/2,由此,及已成功建立变量关系。此时实验图稿如图3.12所示:图3.12 建立变量
27、联系3.3.2设置模型材料参数(1)设置馈电点材料。在绘图历史树中选中feed项,点右键选择Assign Materials,选择copper项,点击确定。(2)设置基片材料。此处步骤同上述步骤相同。需要注意的一点是将substrate 的材料设为Roger RO4003。此时实验图稿如图3.13所示:图3.13 设置基片材料3.3.3设置边界条件和激励源(1)设置空气为辐射边界条件。在绘图历史树中选中airbox项,选中之后点击右键选择assign boundary/radiation,在弹出的新的属性窗口中将其重新命名为air。这一步作用在于,在工程树antenna/boundaries节
28、点下添加了air项。此时实验图稿如图3.14所示:图3.14 设置空气辐射边界(2)设置接地板和贴片天线为有限导体在绘图历史树中,利用ctrl建同时选中groundplane项和patch项,确认以后点击鼠标右键选择assign boundary/finite conductivity,接着在新弹出的属性窗口中给边界命名,不过在这里我们去其默认值。这一步骤的作用在于,将finite condl项添加在antenna/boundaries下。(3)给端口设置激励源。设置激励源当然在端口设置。因此,首先要做的就是在绘图历史树中找到port项并将其选中,点击右键选择 assign excitatio
29、n /lumped port,马上弹出新窗口,在新窗口处重新命名为port1,并且下拉integration line 选择new line项,则开始绘制线。按下tab键开始输入参数,设置其起点坐标(x,y,z)为(0,9.5,0),确认以后输入激励源矢量(dx,dy,dz)为(0,-1,0),点击确认。这一步的作用是新添加了一项port1在antenna/excitation下。3.3.4设置求解条件(1)设置求解条件首先要添加求解设置这一项。这个设置步骤一般分为两部分进行。第一步:点频率设置。我们需要在工程树中找到antenna/analysis选项,选中它并对其点击右键,点击add so
30、lution setup。在弹出的新的对话框中,选择general标签页。在标签页中将其solution 项输入2.45,(注意单位为GHz),将adaptive solution 的maximum number of passes项设置为10,接着将maximum delta S Per项设置为0.01,。确定以后,我们就成功地将setup1项添加到了analysis节点下面。第二部:扫频设置。在工程树中,选中刚刚建立起来的setup1项,点击右键选择add sweep。弹出的新对话框中,在sweep type项中选择fast,在frequency type那一栏中选择linear coun
31、t。我们定义其频率范围为23GHz,count 定义为20,点击确定。这一步骤使我们增加了一个新的频率扫描项。(2)确认设置。由主菜单选择HFSS/validation。点击完以后,则出现信息确认窗口,仔细检查,确认无误以后点击close 结束。此时实验图稿如图3.15所示:图3.15 确认设置(3)分析。分析的步骤类似上一个步骤。点击主菜单HFSS/Analyze,则开始对设计的模型进行求解。求解全部结束以后会在三维模拟框下的信息管理处出现响应结果。3.4创建参数分析并求解3.4.1添加参数设置在工程树上找出optimestrics,选中并点击右键,选择add/parametric项,在弹出
32、的新的对话框中我们可以进行对扫描变量的定义。点击对话框里的sweep definitions标签页,点击添加。在弹出的新窗口中,找到variable项并选择chamsize项和linear count项。注意将其变量范围设为57mm,记住设置三次!点击加入。接着会继续弹出新的窗口,找到variable项,将其选择patchsize和linear count项,变量范围设置为3133mm,同样也是三次!这样就加入了可调变量。这里提示一下,如果想浏览变量的九种不同的组合设置,我们可以点击table标签。如图3.16图3.17所示图3.16 添加参数设置图3.17 table标签3.4.2定义输出变
33、量首先选择calculations标签页,点击加入。在弹出的对话框中,找到solution项并取其默认值为setup1。在lastadaptive项中选择edit calculation 项,最后弹出了output variables对话框。在这个对话框中,我们要对以下三个变量进行定义。分别是:sllmag变量、axiaratio变量、cost变量。虽然要求是定义三个变量,但是实质上这三个变量的定义方法完全相同,我这里就不一一赘述了,取sllmag变量为例来说明。定义sllmag变量:首先找到name 栏,我们首先要将其命名为sllmag(这里即为定义的变量名)。接着在report type
34、项选择modal S solution Data,在 solution项选择默认的setup1,在category项选择S Parameter,在Quantity项选择S,在function 项选择mag,最后点击add,则成功实现对s11变量的添加。以下两个变量的定义方法大致是相同的,只是后面的不同项的选择会有所差别,不过都是按照一定的要求来选择的。3.4.3求解在工程树中找到parametricsetup1项并点击右键,选择analyze,则开始对参数设置中的定义的每一个变量进行完整系统的分析。分析一般会有一段时间,分析结束以后,在最下面的信息管理一栏会出现分析结果。求解分析结果如下图3.
35、18所示:图3.18 分析结果3.5优化求解3.5.1选择优化变量主菜单找到HFSS/design properties。在弹出的新的对话框中选择optimization 项,在patchsize项勾选include项并设置其最小值为30mm,最大值为30.5mm。同样找到chamsize那一栏,勾选include那一项,并设置最小值为5mm,最大值为5.5mm。最后点击确认。3.5.2设置远区辐射场找到工程树上的radiation 选中并点击右键,选择inser far field setup/infinite sphere,弹出新的对话框之后选择infinit sphere标签页,将phi
36、和theta 的参数的stop项均设置为0deg,最后点击确定。3.5.3添加优化设置首先要添加成本函数。和往常一样,我们还是在工程树中找到optimetrics项并选中点击右键,选择加入即可。弹出新的对话框之后,我们找到goals标签。在optimizer项选择 quasi newton项,max no.of iterations项默认为100,并且取消save field前面的勾选项。点击加入。Solution 项取默认的setup1、lastadaptive,在calculation列选择cost变量,按enter键。其次要设置变量数值。同样再选择variables标签页。将chamsi
37、ze变量的override选中,将其起始值改为30.1,注意勾选include项,Min为30,单位均为mm。点击确定即成功完成优化设置。在工程树下的optimistrics节点下自动加入optimizationsetup1项。3.5.4求解优化分析在刚添加的工程树中的optimizationsetup1项中点击右键,选择analyze对其进行优化分析。再在optimizationsetup1项上选择右键,点击view analysis result ,查看结果。要求轴比趋于零。4 结果演示与分析4.1贴片天线的仿真结果4.1.1贴片天线的仿真结果仿真结果如图4.1所示:图4.1 贴片天线仿真
38、结果4.1.2贴片天线的仿真结果分析 对于贴片天线的仿真结果分析,我想从以下两个角度来分析:(1)从仿真的角度;(2)从HFSS软件本身的角度。本实验是基于HFSS软件的对于贴片天线的仿真实验。在完成整个实验的过程中,基本熟悉了HFSS软件的使用方法。目前来说,hfss的功能还是非常强大的,内部存储非常丰富,有接近几十种图形任你挑选来实现仿真。就仿真这一点来说,HFSS的仿效效果非常的完美。仿真的图像非常逼真,且美观。就操作来讲,HFSS的操作非常简洁明了,快捷并且非常方便,对于我们这样“初学者”来说学习起来特别容易上手,是一款特别适合新手的完美无瑕疵的仿真软件。参考文献1 赵春晖,张朝柱微波
39、技术M北京:高等教育出版社,200772 张钧微带天线理论与工程M北京:国防工业出版社,19883 李明洋,刘敏。HFSS天线设计M。北京:电子年工业出版社,2011.84 钟顺时。电磁场基础M。北京:清华大学出版社,2006.65 谢拥军。AnsoftHFSS基础及应用M。西安:西安电子科技大学出版社,2007,6 李明洋。HFSS电磁仿真设计应用详解M。北京:人民邮电出版社,2010.57 李磊,谢拥军,2006,基于固定实镜像平面波展开的快速多极子方法计算微带结构问题,电子学报,33(12):21531568苏东林,雷军,王冰切,2007,系统电磁兼容技术综述与展望,宇航计测技术,(21):34389谢拥军,辛娟,王鹏,2006,波导缝隙阵天线的快速优化设计,电子学报,34(9):1726172810杨锐,谢拥军,王鹏等,2007,含有左手介质双层基底的亚波长谐振腔微带天线研究,物理学报,56(8):4504450811杨锐,谢拥军,李晓峰等,2008,导向介质谐振响应的Floquet模分析,物理学报,58(2):90190712张钧等,1988,微带天线理论与工程,北京:国防工业出版社专业文档供参考,如有帮助请下载。