资源描述
专题二:相似三角形、圆、锐角三角函数综合
班级: 姓名
1.如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E,CF⊥AF,且CF=CE.
(1)求证:CF是⊙O的切线;
(2)若sin∠BAC=,求的值.
2. 如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)求证:BC2=2CD•OE;
(3)若cos∠BAD=,BE=,求OE的长.
3.如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.
A
C
B
D
E
F
O
P
(1)求证:直线PA为⊙O的切线;
(2)求证:EF2=4OD·OP;
(3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长.
4.如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.
(1)求证:BD是⊙O的切线.
(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8, sin∠BFA=,求△ACF的面积.
.
5.如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且满足=,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.
(1)求证:AE⊥DE;
(2)若tan∠CBA=,AE=3,求AF的长.
6.如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.
(1)求证:AD=CD;
(2)若AB=10,cos∠ABC=,求tan∠DBC的值.
7.如图1,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.
(1)求证:AC平分∠DAB;
(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;
(3)如图2,连接OD交AC于点G,若=,求sin∠E的值.
8.如图,在平面直角坐标系中,△ABC是⊙O的内接三角形,AB=AC,点P是的中点,
连接PA,PB,PC.
(1)如图①,若∠BPC=60°,求证:;
(2)如图②,若,求的值.
图①
图②
展开阅读全文