收藏 分销(赏)

2018常微分方程考研复试题库及答案.doc

上传人:丰**** 文档编号:3102491 上传时间:2024-06-18 格式:DOC 页数:57 大小:3.66MB
下载 相关 举报
2018常微分方程考研复试题库及答案.doc_第1页
第1页 / 共57页
2018常微分方程考研复试题库及答案.doc_第2页
第2页 / 共57页
2018常微分方程考研复试题库及答案.doc_第3页
第3页 / 共57页
2018常微分方程考研复试题库及答案.doc_第4页
第4页 / 共57页
2018常微分方程考研复试题库及答案.doc_第5页
第5页 / 共57页
点击查看更多>>
资源描述

1、123132133138139143144145146150151156157162164167168-173174177178180181-184185189190192193194195198199202203205206210211216217221222226227229230233234235236241242将(2x-4y+6)dx+(x+y-3)dy=0化为齐次方程。243求解=f(x+y+1)244说明当p(x连续时,线性齐次方程的0解唯一。245证明线性齐次方程任意两个解的和与差仍是它的解。246常数变易法用变换y=C(x)exp(-dx)与线性齐次方程通解有什么不同248

2、dy/dx-y=0.249求初值问题的解250求解2xy=4x.251求解方程y2y=xexp(2x),y(0)=0.252解方程=253设y(x),y(x)是一阶线性方程两个不相同的特解,试用这两个特解来表示通解。254.用变量替换或微分方法将下面方程化为线性(1) xdx=( x2y+1)dy(2) (x+1)(y y-1)= y(3) y(x)=x+1255化下列方程为线性方程(1) y-y=x(2) y= y- x-1256将方程ydx+(y-x)dy=0给两种解法。257试证明:凡具有通解为y=C(x) + (x)式的一阶方程都是线性方程。其中(x) , (x)为可微函数。常微分方程

3、2答案1231321331381391431441451461501511562157162163164167168173174177178180181184185189190192193194195198199202203205206210211216217221222226227229230233234235236241242方程变形为=,它的分子,分母两条直线交点为(1,2)作变换,于是得到,它已经是齐次方程。243令z=x+y+1,则1,于是=1+f(z),只要f(z)0,可分离变量得x=+C244因p(x)连续,y(x)= yexp(-)在p(x)连续的区间有意义,而exp(-)0。

4、如果y0,推出y(x)=0,如果y(x)0,故零解y(x)=0唯一。245设有两个解y(x),y(x),则y (x)+p(x) y(x)0, y(x)+p(x) y(x) 0,则(y(x) y(x))y(x)( y(x)+y(x)=( y (x)+p(x) y(x)+ y(x)+p(x) y(x) 0表明y(x)y(x)仍是解。246在线性齐次方程通解公式中C是任意常数而在常数变易法中C(x)是x的可微函数。将任意常数C变成可微函数C(x),期望它解决线性非齐次方程求解问题,这一方法成功了,称为常数变易法。247用线性齐次方程通解公式得y=Cexp(sinx)249p(x)=-cosx用线性齐

5、方程初值问题解公式即得y=exp(sinx)250用线性方程通解公式:y=exp(-)(C+)dx)=exp(-x)(C+2exp (-x)=2+Cexp(-x)251公式求得方程通解y(x)=exp(2x) (C+ xexp(2x) exp(-2x)dx)=exp(2x)(c+x)利用初始条件代入上式y(0)=0=C,故y=x exp(2x)252x 看作自变量,y看成函数,则它是非线性方程,经变形为x+y以x为未知函数,y是自变量,它是线性方程,则通积分为x=exp()(c+=cexp(y)-y-1253任一解y(x)满足(y(x) -y(x))/ y(x)- y(x)=C,或(y(x)-

6、 -y(x)+| y(x)这就是一阶方程通解的结构。254令z= x,则dz=2xdx,代入方程得1/2dz=(z-2y+1)dy它已经是线性方程。(1) 令u=y,则=2yy,代回原方程得(x+1)(1/2u-1)=u,变形为=2这已经是线性方程。(2) 它不是微分方程,但对它求导后得y(x)+1,这已经是线性方程。-2xy=exp(x)cosx此为线性方程,从而通解为y=exp()(C+cosxexp(-)dx)=exp(x)(C+sinx) +y(x) (x),( (x)是已知可微函数)此方程为线性方程,从而通解为y=exp(-dx)(C+(x) (x)exp(x)dx)dx=exp(-(x)(C+exp(x)( (x)-1)=Cexp(-(x)+ (x)-1255此为贝努利方程。令z=得z=,它是线性方程。(1) 此为黎卡提方程,通过观察知它有一特解y=-x作变换y=z-x,得贝努利方程z+2z=z,再将方程ydx+(y-x)dy=0给两种解法。试证明:凡具有通解为y=C(x) + (x)式的一阶方程都是线性方程。其中(x) , (x)为可微函数。 (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 研究生考试

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服