1、2017年宁夏中考数学试卷 一、选择题1某地一天的最高气温是8,最低气温是2,则该地这天的温差是()A10 B10 C6 D62下列计算正确的是()A += B(a2)2=a4C(a2)2=a24 D=(a0,b0)3已知x,y满足方程组,则x+y的值为()A9 B7 C5 D34为响应“书香校响园”建设的号召,在全校形成良好的阅读氛围,随机调查了部分学生平均每天阅读时间,统计结果如图所示,则本次调查中阅读时间为的众数和中位数分别是()A2和1 B1.25和1 C1和1 D.1和1.255菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF若EF=,BD=2,则
2、菱形ABCD的面积为()A2 B C6 D86由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()组成这个几何体的小正方形个数是()A3 B4 C5 D67某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔中每名学生的平均成绩及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,则应选择的学生是()甲乙丙丁8.99.59.58.9s20.920.921.011.03A甲 B乙 C丙 D丁8正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B、两点,其中点B的横坐标为2,当y1y2时,x的取值范围是()Ax2或x2
3、Bx2或0x2C2x0或0x2 D2x0或x2二、填空题(本题共8小题,每小题3分,共24分)9分解因式:mn2m=10若二次函数y=x22x+m的图象与x轴有两个交点,则m的取值范围是11实数a在数轴上的位置如图,则|a3|=12用一个圆心角为180,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为13在平行四边形ABCD中,BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于14如图,RtAOB中,AOB=90,OA在x轴上,OB在y轴上,点A,B的坐标分别为(,0),(0,1),把RtAOB沿着AB对折得到RtAOB,则点O的坐标为15已知
4、正ABC的边长为6,那么能够完全覆盖这个正ABC的最小圆的半径是16如图,在平面直角坐标系xOy中,ABC由ABC绕点P旋转得到,则点P的坐标为三、解答题(本题共6道题,每题6分,共36分)17解不等式组18化简求值:(),其中a=2+19在平面直角坐标系中,ABC的三个顶点坐标分别为A(2,1),B(3,3),C(0,4)(1)画出ABC关于原点O成中心对称的A1B1C1;(2)画出A1B1C1关于y轴对称的A2B2C220为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“”表示喜欢,“”表示不喜欢 长跑短
5、跑跳绳跳远200300150200150(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑、则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大? 21在等边ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DEAB,过点E作EFDE,交BC的延长线于点F,求EF的长22某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过
6、39元,则至少用电行驶多少千米?四、解答题(本题共4道题,其中23题、24题每题8分,25题、26题每题10分,共36分)23已知ABC,以AB为直径的O分别交AC于D,BC于E,连接ED,若ED=EC(1) 求证:AB=AC;(2)若AB=4,BC=2,求CD的长24如图,RtABO的顶点O在坐标原点,点B在x轴上,ABO=90,AOB=30,OB=2,反比例函数y=(x0)的图象经过OA的中点C,交AB于点D(1)求反比例函数的关系式;(2)连接CD,求四边形CDBO的面积25某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元现要对在
7、购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个
8、笔芯26在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD若两个点同时运动的时间为x秒(0x3),解答下列问题: (1)设QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;(2)是否存在x的值,使得QPDP?试说明理由2016年宁夏中考数学试卷一、选择题1某地一天的最高气温是8,最低气温是2,则该地这天的温差是()A10 B10 C6 D6【解答】解:根据题意得:8(2)=8+2=10,则该地这天的温差是10,故选A【点评】此题考查了
9、有理数的减法,熟练掌握减法法则是解本题的关键2下列计算正确的是()A +=B(a2)2=a4C(a2)2=a24 D=(a0,b0)【解答】解:A、+无法计算,故此选项错误;B、(a2)2=a4,故此选项错误;C、(a2)2=a24a+4,故此选项错误;D、=(a0,b0),正确故选:D3已知x,y满足方程组,则x+y的值为()A9 B7 C5 D3【解答】解:,+得:4x+4y=20,则x+y=5,4为响应“书香校响园”建设的号召,在全校形成良好的阅读氛围,随机调查了部分学生平均每天阅读时间,统计结果如图所示,则本次调查中阅读时间为的众数和中位数分别是()A2和1 B1.25和1 C1和1
10、D1和1.25【分析】由统计图可知阅读时间为1小数的有19人,人数最多,所以众数为1小时;总人数为40,得到中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),即可确定出中位数为1小时【解答】解:由统计图可知众数为1小时;共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),则中位数是1小时故选C给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数给定一组数据,出现次数最多的那个数,称为
11、这组数据的众数如果一组数据存在众数,则众数一定是数据集里的数5菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF若EF=,BD=2,则菱形ABCD的面积为()A2B C6D8【解答】解:E,F分别是AD,CD边上的中点,EF=,AC=2EF=2,又BD=2,菱形ABCD的面积S=ACBD=22=2,故选:A6由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A3 B4 C5 D6【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的
12、个数是4+1=5个故选:C7某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔中每名学生的平均成绩及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,则应选择的学生是()甲乙丙丁8.99.59.58.9s20.920.921.011.03A甲 B乙 C丙 D丁【解答】解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙;故选B【点评】此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组
13、数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定8正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为2,当y1y2时,x的取值范围是()Ax2或x2 Bx2或0x2C2x0或0x2 D2x0或x2【分析】由正、反比例函数的对称性结合点B的横坐标,即可得出点A的横坐标,再根据两函数图象的上下关系结合交点的横坐标,即可得出结论【解答】解:正比例和反比例均关于原点O对称,且点B的横坐标为2,点A的横坐标为2观察函数图象,发现:当x2或0x2时,一次函数图象在反比例函数图象的下方,当y1y2时,x的取值范围是x2或0x2故选B【点评】本题考查了反比例
14、函数与一次函数交点的问题、反比例函数的性质以及正比例函数的性质,解题的关键是求出点A的横坐标本题属于基础题,难度不大,根据正、反比例的对称性求出点A的横坐标,再根据两函数的上下位置关系结合交点坐标即可求出不等式的解集二、填空题(本题共8小题,每小题3分,共24分)9分解因式:mn2m=m(n+1)(n1)【解答】解:mn2m,=m(n21),=m(n+1)(n1)10若二次函数y=x22x+m的图象与x轴有两个交点,则m的取值范围是m1【解答】解:二次函数y=x22x+m的图象与x轴有两个交点,0,44m0,m1故答案为m1【点评】本题考查抛物线与x轴的交点,解题的关键是记住=0抛物线与x轴只
15、有一个交点,0抛物线与x轴有两个交点,0抛物线与x轴没有交点,属于中考常考题型11实数a在数轴上的位置如图,则|a3|=3a【解答】解:由数轴上点的位置关系,得a3|a3|=3a,故答案为:3a12用一个圆心角为180,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为2【解答】解:设这个圆锥的底面圆的半径为R,由题意:2R=,解得R=2故答案为213在平行四边形ABCD中,BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于2【分析】由平行四边形的性质和已知条件证出BAE=BEA,证出AB=BE=3;求出AB+BC=8,得出BC=5,即可得出EC
16、的长【解答】解:四边形ABCD是平行四边形,ADBC,AB=CD,AD=BC,AEB=DAE,平行四边形ABCD的周长是16,AB+BC=8,AE是BAD的平分线,BAE=DAE,BAE=AEB,AB=BE=3,BC=5,EC=BCBE=53=2;故答案为:214如图,RtAOB中,AOB=90,OA在x轴上,OB在y轴上,点A,B的坐标分别为(,0),(0,1),把RtAOB沿着AB对折得到RtAOB,则点O的坐标为(,)【分析】作OCy轴于点C,首先根据点A,B的坐标分别为(,0),(0,1)得到BAO=30,从而得出OBA=60,然后根据RtAOB沿着AB对折得到RtAOB,得到CBO=
17、60,最后设BC=x,则OC=x,利用勾股定理求得x的值即可求解【解答】解:如图,作OCy轴于点C,点A,B的坐标分别为(,0),(0,1),OB=1,OA=,tanBAO=,BAO=30,OBA=60,RtAOB沿着AB对折得到RtAOB,CBO=60,设BC=x,则OC=x,x2+(x)2=1,解得:x=(负值舍去),OC=OB+BC=1+=,点O的坐标为(,)故答案为:(,)15已知正ABC的边长为6,那么能够完全覆盖这个正ABC的最小圆的半径是2【分析】能够完全覆盖这个正ABC的最小圆的半径是ABC外接圆的半径,求出ABC外接圆的半径即可解决问题设O是ABC的外接圆,连接OB,OC,作
18、OEBC于E,ABC是等边三角形,A=60,BOC=2A=120,OB=OC,OEBC,BOE=60,BE=EC=3,sin60=,OB=2,故答案为216如图,在平面直角坐标系xOy中,ABC由ABC绕点P旋转得到,则点P的坐标为(1,1)【分析】连接AA,CC,线段AA、CC的垂直平分线的交点就是点P【解答】解:连接AA、CC,作线段AA的垂直平分线MN,作线段CC的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心直线MN为:x=1,设直线CC为y=kx+b,由题意:,直线CC为y=x+,直线EFCC,经过CC中点(,),直线EF为y=3x+2,由得,P(1,1)故答案为(1
19、,1)三、解答题(本题共6道题,每题6分,共36分)17解不等式组【解答】解:,由得,x3,由得,x2,故不等式组的解集为:2x318化简求值:(),其中a=2+【解答】解:原式=+=+=,当a=2+时,原式=+1坐标系中,ABC的三个顶点坐标分别为A(2,1),B(3,3),C(0,4)(1)画出ABC关于原点O成中心对称的A1B1C1;(2)画出A1B1C1关于y轴对称的A2B2C2【解答】解:(1)A1B1C1如图所示;(2)A2B2C2如图所示20为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“”表
20、示喜欢,“”表示不喜欢长跑短跑跳绳跳远200300150200150【解答】解:(1)同时喜欢短跑和跳绳的概率=;(2)同时喜欢三个项目的概率=;(3)同时喜欢短跑的概率=,同时喜欢跳绳的概率=,同时喜欢跳远的概率=,同时喜欢跳绳的可能性大21在等边ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DEAB,过点E作EFDE,交BC的延长线于点F,求EF的长【分析】先证明DEC是等边三角形,再在RTDEC中求出EF即可解决问题【解答】解:ABC是等边三角形,B=ACB=60,DEAB,EDC=B=60,EDC是等边三角形,DE=DC=2,在RTDEC中,DEC=90,DE=2,DF=
21、2DE=4,EF=222某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?【解答】解:(1)设每行驶1千米纯用电的费用为x元,=解得,x=0.26经检验,x=0.26是原分式方程的解,即每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,0.26y+(y)(0.26+0.50)39解得,y74,即至少用电行驶74千米四、解答题(本题共4
22、道题,其中23题、24题每题8分,25题、26题每题10分,共36分)23已知ABC,以AB为直径的O分别交AC于D,BC于E,连接ED,若ED=EC(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长【考点】圆周角定理;等腰三角形的判定与性质;勾股定理【分析】(1)由等腰三角形的性质得到EDC=C,由圆外接四边形的性质得到EDC=B,由此推得B=C,由等腰三角形的判定即可证得结论;(2)连接AE,由AB为直径,可证得AEBC,由(1)知AB=AC,由“三线合一”定理得到BE=CE=BC=,由割线定理可证得结论【解答】(1)证明:ED=EC,EDC=C,EDC=B,B=C,AB=AC
23、;(2)解:连接AE,AB为直径,AEBC,由(1)知AB=AC,BE=CE=BC=,CECB=CDCA,AC=AB=4,2=4CD,CD=24如图,RtABO的顶点O在坐标原点,点B在x轴上,ABO=90,AOB=30,OB=2,反比例函数y=(x0)的图象经过OA的中点C,交AB于点D(1)求反比例函数的关系式;(2)连接CD,求四边形CDBO的面积【解答】解:(1)ABO=90,AOB=30,OB=2,AB=OB=2,作CEOB于E,ABO=90,CEAB,OC=AC,OE=BE=OB=,CE=AB=1,C(,1),反比例函数y=(x0)的图象经过OA的中点C,1=,k=,反比例函数的关
24、系式为y=;(2)OB=2,D的横坐标为2,代入y=得,y=,D(2,),BD=,AB=2,AD=,SACD=ADBE=,S四边形CDBO=SAOBSACD=OBAB=22=25某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数(1)若n=9,求y与x的函数关系式;(2)若
25、要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯【考点】一次函数的应用;频数与频率;条形统计图【分析】(1)根据题意列出函数关系式;(2)由条形统计图得到需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,即可(3)分两种情况计算【解答】解:(1)当n=9时,y=;(2)根据题意,“更换笔芯的个数不大于同时购买笔芯的个数”
26、的频率不小于0.5,则“更换笔芯的个数不大于同时购买笔芯的个数”的频数大于300.5=15,根据统计图可得,需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,因此当n=9时,“更换笔芯的个数不大于同时购买笔芯的个数”的频数=4+6+8=1815因此n的最小值为9(3)若每支笔同时购买9个笔芯,则所需费用总和=(4+6+8)39+7(39+51)+5(39+52)=895,若每支笔同时购买10个笔芯,则所需费用总和=(4+6+8+7)310+5(310+51)=925,因此应购买9个笔芯26在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度
27、,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD若两个点同时运动的时间为x秒(0x3),解答下列问题:(1)设QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;(2)是否存在x的值,使得QPDP?试说明理由【考点】四边形综合题【分析】(1)可用x表示出AQ、BQ、BP、CP,从而可表示出SADQ、SBPQ、SPCD的面积,则可表示出S,再利用二次函数的增减性可求得是否有最大值,并能求得其最小值;(2)用x表示出BQ、BP、PC,当QPDP时,可证明BPQCDP,利用相似三角形的性质可得到关于x的方程,可求得
28、x的值【解答】解:(1)四边形ABCD为矩形,BC=AD=4,CD=AB=3,当运动x秒时,则AQ=x,BP=x,BQ=ABAQ=3x,CP=BCBP=4x,SADQ=ADAQ=4x=2x,SBPQ=BQBP=(3x)x=xx2,SPCD=PCCD=(4x)3=6x,又S矩形ABCD=ABBC=34=12,S=S矩形ABCDSADQSBPQSPCD=122x(xx2)(6x)=x22x+6=(x2)2+4,即S=(x2)2+4,S为开口向上的二次函数,且对称轴为x=2,当0x2时,S随x的增大而减小,当2x3时,S随x的增大而增大,又当x=0时,S=5,当S=3时,S=,但x的范围内取不到x=0,S不存在最大值,当x=2时,S有最小值,最小值为4;(2)存在,理由如下:由(1)可知BQ=3x,BP=x,CP=4x,当QPDP时,则BPQ+DPC=DPC+PDC,BPQ=PDC,且B=C,BPQPCD,=,即=,解得x=(舍去)或x=,当x=时QPDP【点评】本题为四边形的综合应用,涉及知识点有矩形的性质、二次函数的最值、相似三角形的判定和性质及方程思想等在(1)中求得S关于x的关系式后,求S的最值时需要注意x的范围,在(2)中证明三角形相似是解题的关键本题考查知识点较多,综合性较强,难度适中