1、第八周周清 一元二次不等式核心知识总结升华:1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力;2. 当时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题).3. 当二次项的系数小于0时,一般都转化为大于0后,再解答.自我测评类型二:已知一元二次不等式的解集求待定系数例2不等式的解集为,求关于的不等式的解集。思路点拨:由二次不等式的解集为可知:4、5是方程的二根,故由韦达定理可求出、的值,从而解得. 解析:由题意可知方程的两根为和由韦达定理有,化为,即,解得,故不等式的解集为.总结升华
2、:二次方程的根是二次函数的零点,也是相应的不等式的解集的端点.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系,这一点是解此类题的关键。举一反三:【变式1】不等式ax2+bx+120的解集为x|-3x2,则a=_, b=_。【答案】由不等式的解集为x|-3x2知a0,且方程ax2+bx+12=0的两根为-3,2。由根与系数关系得解得a=-2, b=-2。【变式2】已知的解为,试求、,并解不等式.【答案】由韦达定理有:,,.代入不等式得,即,解得,故不等式的解集为:.【变式3】已知关于的不等式的解集为,求关于的不等式的解集.【答案】由韦达定理有:
3、,解得, 代入不等式得,即,解得或.的解集为:.类型三:二次项系数含有字母的不等式恒成立恒不成立问题例3已知关于x的不等式(m2+4m-5)x2-4(m-1)x+30对一切实数x恒成立,求实数m的取值范围。思路点拨:不等式对一切实数恒成立,即不等式的解集为R,要解决这个问题还需要讨论二次项的系数。解析:(1)当m2+4m-5=0时,m=1或m=-5 若m=1,则不等式化为30, 对一切实数x成立,符合题意。 若m=-5,则不等式为24x+30,不满足对一切实数x均成立,所以m=-5舍去。(2)当m2+4m-50即 m1且m-5时, 由此一元二次不等式的解集为R知,抛物线y=(m2+4m-5)x
4、2-4(m-1)x+3开口向上,且与x轴无交点, 所以, 即, 1m19。 综上所述,实数m的取值范围是m|1m19。总结升华:情况(1)是容易忽略的,所以当我们遇到二次项系数含有字母时,一般需讨论。举一反三:【变式1】 若关于的不等式的解集为空集,求的取值范围.【答案】关于的不等式的解集为空集 即的解集为R 当时,原不等式为:,即,不符合题意,舍去. 当时,原不等式为一元二次不等式,只需且, 即,解得, 综上,的取值范围为:.【变式2】若关于的不等式的解为一切实数,求的取值范围.【答案】当时,原不等式为:,即,不符合题意,舍去. 当时,原不等式为一元二次不等式,只需且, 即,解得, 综上,的取值范围为:.【变式3】若关于的不等式的解集为非空集,求的取值范围.【答案】当时,原不等式为:,即,符合题意. 当时,原不等式为一元二次不等式,显然也符合题意 当时,只需, 即,解得, 综上,的取值范围为:.