1、机械设计课程设计说明书专业:机械电子工程2016年12月29日重庆理工大学目录一、 任务设计书.3二、 传动方案的拟订及说明.3三、选择电动机.4四、计算传动装置的运动和动力参数.5五、传动件的设计计算.6六、轴的设计计算.15七、滚动轴承的选择及计算.34八、键联接的选择及校核计算.37九、联轴器的选择.38十、减速器附件的选择.39十一、润滑与密封.39 十二、箱体数据.39十三、设计小结.40十四、参考目录.4042一、任务设计书设计一用于带式运输机上的圆锥圆柱齿轮齿轮减速器。工作经常满载,空载启动,工作有轻振,不反转,单班制工作。运输带容许速度误差为5%。减速器为小批生产,使用期限10
2、年。(已知带式运输机驱动卷筒的圆周牵引力F=2000N,带速v=1.2m/s,卷筒直径D=320m,设每年工作300天)二、传动方案的拟订和说明计算驱动卷筒的转速如下:选用同步转速为1000r/min或1500r/min的电动机作为原动机,因此传动装置总传动比约为13,根据总传动比数值,可拟定以下传动方案:图一三、选择电动机1)电动机类型和结构型式按工作要求和工作条件,选用一般用途的Y(IP44)系列三相异步电动机。它为卧式封闭结构。2)电动机容量(1)卷筒的输出功率(2)电动机输出功率传动装置的总效率式中、为从电动机至卷筒轴的各传动机构和轴承的效率。由课程设计教材表2-5查得:V带传动=0.
3、96;滚动轴承=0.988;圆柱齿轮传动=0.97;圆锥齿轮传动=0.96;弹性联轴器=0.99;卷筒轴滑动轴承=0.96;则故 (3)电动机额定功率由教材查得选取电动机额定功率。3)电动机的转速推算电动机转速可选范围,由课程设计教材表2-3查得带传动常用传动比范围,单级圆柱齿轮传动比范围,圆锥齿轮传动比范围,则电动机转速可选范围为:初选同步转速分别为1000r/min和1500r/min的两种电动机进行比较,如下表:方案电动机型号额定功率()电动机转速(r/min)电动机质量(kg)同步满载1Y132M1-641000960732Y112M-441500144043传动装置的传动比总传动比V
4、带传动二级减速器12.373.13.9918.564.644两方案均可行,但方案1传动比较小,传动装置结构尺寸较小,因此采用方案1,选定电动机的型号为Y132M1-64)电动机的技术数据和外形,安装尺寸四、计算传动装置的运动和动力参数1)传动装置总传动比2)分配各级传动比因为是圆锥圆柱齿轮减速器,所以圆锥圆柱齿轮减速器传动比3)各轴转速(轴号见图一)4)各轴输入功率按电动机所需功率计算各轴输入功率,即5)各轴转矩项目轴1轴2轴3轴4轴5转速(r/min)96096028771.671.6功率(kw)2.962.8952.782.662.63转矩(N*m)29.4528.79992.63355.
5、27350.79传动比113.3541效率10.9780.960.9580.988五、传动件的设计计算圆锥直齿轮设计已知输入功率,小齿轮转速960r/min,齿数比u=3.35,由电动机驱动,工作寿命10年(设每年工作300天),一班制,带式输送机工作经常满载,空载起动,工作有轻震,不反转。1、 选定齿轮精度等级、材料及齿数1) 圆锥圆柱齿轮减速器为通用减速器,速度不高,故选用7级精度(GB10095-88)2) 材料选择 由机械设计(第九版) 表10-1选择小齿轮材料为(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS。3) 选小齿轮齿数,大齿轮齿数,取整。则2、
6、按齿面接触强度设计由设计计算公式进行试算,即(1) 确定公式内的各计算数值1) 试选载荷系数2) 计算小齿轮的转矩3) 选齿宽系数4)由机械设计(第九版)图10-25d按齿面硬度查得小齿轮的接触疲劳强度极限,大齿轮的接触疲劳强度极限5)由机械设计(第九版)表10-5查得材料的弹性影响系数6) 计算应力循环次数7) 由机械设计(第九版)图10-23取接触疲劳寿命系数8) 计算接触疲劳许用应力取失效概率为1%,安全系数S=1,得(2) 计算1) 试算小齿轮分度圆直径,代入中较小的值2) 计算圆周速度v3) 计算载荷系数根据,7级精度,由机械设计(第九版)图10-8查得动载系数直齿轮由机械设计(第九
7、版)表10-2查得使用系数根据大齿轮两端支撑,小齿轮作悬臂布置,查机械设计(第九版)表得轴承系数,则接触强度载荷系数4) 按实际的载荷系数校正所算得的分度圆直径,得5) 计算模数m取标准值6)计算齿轮相关参数6) 圆整并确定齿宽圆整取,3、 校核齿根弯曲疲劳强度1) 确定弯曲强度载荷系数2) 计算当量齿数3) 由机械设计(第九版)查得齿形系数应力校正系数4) 由机械设计(第九版)查得小齿轮的弯曲疲劳强度极限,大齿轮的弯曲疲劳强度极限由机械设计(第九版)取弯曲疲劳寿命系数5)6) 计算弯曲疲劳许用应力取弯曲疲劳安全系数,得7)校核弯曲强度根据弯曲强度条件公式进行校核满足弯曲强度,所选参数合适。圆
8、柱斜齿轮设计已知输入功率,小齿轮转速187r/min,齿数比u=4,由电动机驱动,工作寿命10年(设每年工作300天),一班制,带式输送机工作经常满载,空载起动,工作有轻震,不反转。1、 选定齿轮精度等级、材料及齿数1) 圆锥圆柱齿轮减速器为通用减速器,速度不高,故选用7级精度(GB10095-88)2)材料选择 由机械设计(第九版)表10-1选择大小齿轮材料均为45钢(调质),小齿轮齿面硬度为250HBS,大齿轮齿面硬度为220HBS。3)选小齿轮齿数,大齿轮齿数4)选取螺旋角。初选螺旋角 2、 按齿面接触强度设计由设计计算公式进行试算,即(1) 确定公式内的各计算数值1) 试选载荷系数2)
9、 计算小齿轮的转矩3) 选齿宽系数4) 由机械设计(第九版)图10-20选取区域系数5) 由机械设计(第九版) 查得,则6)由机械设计(第九版)表10-5查得材料的弹性影响系数7) 计算应力循环次数8) 由机械设计(第九版)图10-25按齿面硬度查得小齿轮的接触疲劳强度极限,大齿轮的接触疲劳强度极限9)由机械设计(第九版)图10-23取接触疲劳寿命系数10)计算接触疲劳许用应力取失效概率为1%,安全系数S=1,得(2)计算1)试算小齿轮分度圆直径,由计算公式得2) 计算圆周速度v3) 计算齿宽b及模数4) 计算纵向重合度5)计算载荷系数根据,7级精度,由机械设计(第九版)图10-8查得动载系数
10、由机械设计(第九版)表10-3查得由机械设计(第九版)表10-2查得使用系数由机械设计(第九版)图10-13查得 由机械设计(第九版)表10-4查得接触强度载荷系数6)按实际的载荷系数校正所算得的分度圆直径,得7)计算模数取8)几何尺寸计算(1) 计算中心距(2) 按圆整后的中心距修正螺旋角因值改变不多,故参数、等不必修正(3) 计算大小齿轮的分度圆直径(4)计算齿轮宽度圆整后取 3、 校核齿根弯曲疲劳强度1) 确定弯曲强度载荷系数2) 根据重合度,由机械设计(第九版) 查得螺旋角影响系数3) 计算当量齿数4)由机械设计(第九版)查得齿形系数应力校正系数5) 由机械设计(第九版)查得小齿轮的弯
11、曲疲劳强度极限,大齿轮的弯曲疲劳强度极限6) 由机械设计(第九版)取弯曲疲劳寿命系数7) 计算弯曲疲劳许用应力取弯曲疲劳安全系数,得8) 校核弯曲强度根据弯曲强度条件公式进行校核满足弯曲强度,所选参数合适。绘画大齿轮:数据处理:d=55mmL=1.4d=77mm=1.4mn=9mmC=22.8mmN=0.5mn=1.5mmda=290mmD1=da-10mn=260mmd1=1.6d=88mmDo=0.5(D1+d1)=174mmDo=0.25(D1-d1)=43mmr=5mmb=16mmh=5mm六、轴的设计计算(一)输入轴设计1、求输入轴上的功率、转速和转矩 2、求作用在齿轮上的力已知高速
12、级小圆锥齿轮的分度圆半径为而圆周力、径向力及轴向力的方向如图二所示图二3、 初步确定轴的最小直径先初步估算轴的最小直径。选取轴的材料为45钢(调质),根据机械设计(第九版)表15-3,取,得,输入轴的最小直径为安装联轴器的直径,为了使所选的轴直径与联轴器的孔径相适应,故需同时选取联轴器型号。联轴器的计算转矩,查机械设计(第九版)表14-1,由于转矩变化很小,故取,则查课程设计教材,选HL1型弹性柱销联轴器,其公称转矩为160000,半联轴器的孔径,故取,半联轴器长度,半联轴器与轴配合的毂孔长度为38mm。4、 轴的结构设计(1) 拟定轴上零件的装配方案(见图三)图三(2) 根据轴向定位的要求确
13、定轴的各段直径和长度1) 为了满足半联轴器的轴向定位,1-2轴段右端需制出一轴肩,故取2-3段的直径2) 初步选择滚动轴承。因轴承同时受有径向力和轴向力,故选用单列圆锥滚子轴承,参照工作要求并根据,由课程设计教材中初步选取0基本游隙组,标准精度级的单列圆锥滚子轴承30306,其尺寸为,而。这对轴承均采用轴肩进行轴向定位,由课程设计教材查得30306型轴承的定位轴肩高度,因此取3)取安装齿轮处的轴段6-7的直径;为使套筒可靠地压紧轴承, 5-6段应略短于轴承宽度,故取。4)轴承端盖的总宽度为20mm。根据轴承端盖的装拆及便于对轴承添加润滑油 的要求,求得端盖外端面与半联轴器右端面间的距离,故取
14、5)锥齿轮轮毂宽度为64.86mm,为使套筒端面可靠地压紧齿轮取。7) 由于,故取(3) 轴上的周向定位圆锥齿轮的周向定位采用平键连接,按由机械设计(第九版)表6-1查得平键截面,键槽用键槽铣刀加工,长为50mm,同时为保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为;滚动轴承与轴的周向定位是由过渡配合来保证的,此处选轴的尺寸公差为k6。(4) 确定轴上圆角和倒角尺寸取轴端倒角为5、 求轴上的载荷载荷水平面H垂直面V支反力F弯矩M 总弯矩扭矩T6、按弯扭合成应力校核轴的强度根据上表中的数据及轴的单向旋转,扭转切应力为脉动循环变应力,取,轴的计算应力前已选定轴的材料为45钢(调质),由
15、机械设计(第九版)表15-1查得,故安全。6、 精确校核轴的疲劳强度(1) 判断危险截面截面5右侧受应力最大(2) 截面5右侧抗弯截面系数抗扭截面系数截面5右侧弯矩M为截面5上的扭矩为截面上的弯曲应力截面上的扭转切应力轴的材料为45钢,调质处理。由表15-1查得。截面上由于轴肩而形成的理论应力集中系数及按附表查取。因,经插值后查得又由附表可得轴的材料敏感系数为故有效应力集中系数为由附表的尺寸系数,扭转尺寸系数。轴按磨削加工,由附表得表面质量系数为轴未经表面强化处理,即,则综合系数为又取碳钢的特性系数计算安全系数值故可知安全。(二)中间轴设计1、求中间轴上的功率、转速和转矩 2、求作用在齿轮上的
16、力已知圆柱斜齿轮的分度圆半径而已知圆锥直齿轮的平均分度圆半径而圆周力、,径向力、及轴向力、的方向如图四所示图四3、初步确定轴的最小直径先初步估算轴的最小直径。选取轴的材料为(调质),根据机械设计(第九版)表15-3,取,得,中间轴最小直径显然是安装滚动轴承的直径和4、 轴的结构设计(1) 拟定轴上零件的装配方案(见下图图五)(2)根据轴向定位的要求确定轴的各段直径和长度1)初步选择滚动轴承。因轴承同时受有径向力和轴向力,故选用单列圆锥滚子轴承,参照工作要求并根据,由课程设计教材中初步选取0基本游隙组,标准精度级的单列圆锥滚子轴承30306,其尺寸为,。 这对轴承均采用套筒进行轴向定位,由课程设
17、计教材查得30306型轴承的定位轴肩高度,因此取套筒直径。2)取安装齿轮的轴段,锥齿轮左端与左轴承之间采用套筒定位,已知锥齿轮轮毂长,为了使套筒端面可靠地压紧端面,此轴段应略短于轮毂长,故取,齿轮的右端采用轴肩定位,轴肩高度,故取,则轴环处的直径为。3) 已知圆柱直齿轮齿宽,为了使套筒端面可靠地压紧端面,此轴段应略短于轮毂长,故取。4)箱体一小圆锥齿轮中心线为对称轴,则取。(3)轴上的周向定位圆锥齿轮的周向定位采用平键连接,按由机械设计(第九版)表6-1查得平键截面,键槽用键槽铣刀加工,长为22mm,同时为保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为;圆柱齿轮的周向定位采用平键连
18、接,按由机械设计(第九版)表6-1查得平键截面,键槽用键槽铣刀加工,长为56mm,同时为保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为;滚动轴承与轴的周向定位是由过渡配合来保证的,此处选轴的尺寸公差为m6。(4)确定轴上圆角和倒角尺寸取轴端倒角为5、 求轴上的载荷载荷水平面H垂直面V支反力F弯矩M 总弯矩扭矩T6、按弯扭合成应力校核轴的强度根据上表中的数据及轴的单向旋转,扭转切应力为脉动循环变应力,取,轴的计算应力前已选定轴的材料为(调质),由机械设计(第八版)表15-1查得,故安全。7、精确校核轴的疲劳强度(1)判断危险截面截面5左右侧受应力最大(2)截面5右侧抗弯截面系数抗扭截
19、面系数截面5右侧弯矩M为截面5上的扭矩为截面上的弯曲应力截面上的扭转切应力轴的材料为,调质处理。由表15-1查。截面上由于轴肩而形成的理论应力集中系数及按附图查取。因,经插值后查得又由附表可得轴的材料敏感系数为故有效应力集中系数为由附图的尺寸系数,扭转尺寸系数。轴按磨削加工,由附图得表面质量系数为轴未经表面强化处理,即,则综合系数为又取合金钢的特性系数计算安全系数值故可知安全。(3)截面5左侧抗弯截面系数抗扭截面系数截面5左侧弯矩M为截面5上的扭矩为截面上的弯曲应力截面上的扭转切应力过盈配合处的,由附表用插值法求出,并取,于是得轴按磨削加工,由附图得表面质量系数为故得综合系数为计算安全系数值故
20、可知安全。(三) 输出轴设计1、求输出轴上的功率、转速和转矩 2、求作用在齿轮上的力已知圆柱斜齿轮的分度圆半径而圆周力、径向力及轴向力的方向如图六所示图六3、初步确定轴的最小直径先初步估算轴的最小直径。选取轴的材料为45钢(调质),根据机械设计(第九版)表15-3,取,得,输出轴的最小直径为安装联轴器的直径,为了使所选的轴直径与联轴器的孔径相适应,故需同时选取联轴器型号。联轴器的计算转矩,查机械设计(第九版)表14-1,由于转矩变化很小,故取,则查课程设计教材,选HL3型弹性柱销联轴器,其公称转矩为630000,半联轴器的孔径,故取,半联轴器长度,半联轴器与轴配合的毂孔长度为84mm。4、 轴
21、的结构设计(1) 拟定轴上零件的装配方案(见图六)图六(2)根据轴向定位的要求确定轴的各段直径和长度1)为了满足半联轴器的轴向定位,1-2轴段右端需制出一轴肩,故取2-3段的 直径,左端用轴端挡圈定位,按轴端挡圈直径, 半联轴器与轴配合的毂孔长度,为了保证轴端挡圈只压在半联 轴器上而不压在轴的端面上,故1-2段的长度应比略短些,现取 。2) 初步选择滚动轴承。因轴承同时受有径向力和轴向力,故选用单列圆锥滚子轴承,参照工作要求并根据,由课程设计教材中初步选取0基本游隙组,标准精度级的单列圆锥滚子轴承30310,其尺寸为,而。左端轴承采用轴肩进行轴向定位,由课程设计教材查得30310型轴承的定位轴
22、肩高度,因此取;齿轮右端和右轴承之间采用套筒定位,已知齿轮轮毂的宽度为71mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取。齿轮的左端采用轴肩定位,轴肩高度,故取,则轴环处的直径为。轴环宽度,取。4)轴承端盖的总宽度为20mm,根据轴承端盖的装拆及便于对轴承添加润滑油的要求,求得端盖外端面与半联轴器右端面间的距离,故取 5)箱体一小圆锥齿轮中心线为对称轴,则取。(3)轴上的周向定位齿轮、半联轴器的周向定位均采用平键连接,按由机械设计(第九版)表6-1查得平键截面,键槽用键槽铣刀加工,长为50mm,同时为保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为;同样,半联轴器与
23、轴的连接,选用平键,半联轴器与轴的配合为,滚动轴承与轴的周向定位是由过渡配合来保证的,此处选轴的尺寸公差为k6。(4)确定轴上圆角和倒角尺寸取轴端倒角为5、 求轴上的载荷载荷水平面H垂直面V支反力F弯矩M 总弯矩扭矩T6、按弯扭合成应力校核轴的强度根据上表中的数据及轴的单向旋转,扭转切应力为脉动循环变应力,取,轴的计算应力前已选定轴的材料为45钢(调质),由机械设计(第九版)表15-1查得,故安全。7、精确校核轴的疲劳强度(1)判断危险截面截面7右侧受应力最大(2)截面7右侧抗弯截面系数抗扭截面系数截面7右侧弯矩M为截面7上的扭矩为截面上的弯曲应力截面上的扭转切应力轴的材料为45钢,调质处理。
24、由表15-1查得。截面上由于轴肩而形成的理论应力集中系数及按附表查取。因,经插值后查得又由附图可得轴的材料敏感系数为故有效应力集中系数为由附图的尺寸系数,扭转尺寸系数。轴按磨削加工,由附图得表面质量系数为轴未经表面强化处理,即,则综合系数为又取碳钢的特性系数计算安全系数值故可知安全。七、滚动轴承的选择及计算(一)输入轴滚动轴承计算初步选择滚动轴承,由课程设计教材中初步选取0基本游隙组,标准精度级的单列圆锥滚子轴承30306,其尺寸为, ,载荷水平面H垂直面V支反力F则则则则,则 则故合格。(二)中间轴滚动轴承计算初步选择滚动轴承,由课程设计教材中初步选取0基本游隙组,标准精度级的单列圆锥滚子轴
25、承30306,其尺寸为,载荷水平面H垂直面V支反力F则则则则,则 则故合格。(三)输出轴轴滚动轴承计算初步选择滚动轴承,由课程设计教材中初步选取0基本游隙组,标准精度级的单列圆锥滚子轴承30310,其尺寸为,载荷水平面H垂直面V支反力F则则则则,则 则故合格。八、键联接的选择及校核计算(一)输入轴键计算1、 校核联轴器处的键连接该处选用普通平键尺寸为,接触长度,则键联接所能传递的转矩为:,故单键即可。2、 校核圆锥齿轮处的键连接该处选用普通平键尺寸为,接触长度,则键联接所能传递的转矩为:,故单键即可。(二)中间轴键计算1、 校核圆锥齿轮处的键连接该处选用普通平键尺寸为,接触长度,则键联接所能传
26、递的转矩为:,故单键即可。2、 校核圆柱齿轮处的键连接该处选用普通平键尺寸为,接触长度,则键联接所能传递的转矩为:,故单键即可。(三)输出轴键计算1、 校核联轴器处的键连接该处选用普通平键尺寸为,接触长度,则键联接所能传递的转矩为:,故单键即可。2、 校核圆柱齿轮处的键连接该处选用普通平键尺寸为,接触长度,则键联接所能传递的转矩为:,故单键即可。九、联轴器的选择在轴的计算中已选定联轴器型号。输入轴选HL1型弹性柱销联轴器,其公称转矩为160000,半联轴器的孔径,故取,半联轴器长度,半联轴器与轴配合的毂孔长度为38mm。输出轴选选HL3型弹性柱销联轴器,其公称转矩为630000,半联轴器的孔径
27、,故取,半联轴器长度,半联轴器与轴配合的毂孔长度为84mm。十、减速器附件的选择选定通气帽,A型压配式圆形油标A20(GB1160.1-89),外六角油塞及封油垫,箱座吊耳,吊环螺钉M12(GB825-88),启盖螺钉M8。十一、润滑与密封齿轮采用浸油润滑,由表查得选用N220中负荷工业齿轮油(GB5903-86)。当齿轮圆周速度时,圆锥齿轮浸入油的深度约一个齿高,三分之一齿轮半径,大齿轮的齿顶到油底面的距离3060mm。由于大圆锥齿轮,可以利用齿轮飞溅的油润滑轴承,并通过油槽润滑其他轴上的轴承,且有散热作用,效果较好。密封防止外界的灰尘、水分等侵入轴承,并阻止润滑剂的漏失。十二、 箱体数据箱
28、座厚度=8mm箱盖厚度1=8mm箱盖凸缘厚度b1=1.51=12mm箱座凸缘厚度b=1.5=12mm箱底凸缘厚度b2=2.5=20mm地脚螺钉直径df=0.036a+12=18.44mm地脚螺钉数目n=4轴承旁连接螺栓直径d1=0.75df=13.83mm盖与座连接螺栓直径d2=(0.5-0.6)df=11mm轴承端盖螺钉直径d3=(0.4-0.5)df=9mm视孔盖螺钉直径d4=(0.3-0.4)df=6mm定位销直径d=8mmdf,d1,d2到外箱壁的距离C1=18mmDf,d2到凸缘边缘距离C2=16mm外箱座到轴承端座壁距离L1=40mm大齿轮顶圆与内箱壁距离1=9.6mm齿轮端面与内
29、箱壁距离2=8mm箱盖肋板厚度m1=6.8mm箱座肋板厚度m=6.8mm十三、设计小结这次关于带式运输机上的两级圆锥圆柱齿轮减速器的课程设计是我们真正理论联系实际、深入了解设计概念和设计过程的实践考验,对于提高我们机械设计的综合素质大有用处。通过两个星期的设计实践,使我对机械设计有了更多的了解和认识.为我们以后的工作打下了坚实的基础。机械设计是机械工业的基础,是一门综合性相当强的技术课程,它融机械原理、机械设计、理论力学、材料力学、互换性与技术测量、工程材料、等于一体。这次的课程设计,对于培养我们理论联系实际的设计思想、训练综合运用机械设计和有关先修课程的理论,结合生产实际反应和解决工程实际问
30、题的能力,巩固、加深和扩展有关机械设计方面的知识等方面有重要的作用。十四、参考文献机械设计课程设计图册第三版,哈尔滨工业大学,高等教育出版社互换性与测量技术基础第三版,沈阳大学,机械工业出版社机械设计第九版,西北工业大学,高等教育出版社机械原理第八版,西北工业大学,高等教育出版社1. 基于C8051F单片机直流电动机反馈控制系统的设计与研究2. 基于单片机的嵌入式Web服务器的研究 3. MOTOROLA单片机MC68HC(8)05PV8/A内嵌EEPROM的工艺和制程方法及对良率的影响研究 4. 基于模糊控制的电阻钎焊单片机温度控制系统的研制 5. 基于MCS-51系列单片机的通用控制模块的
31、研究 6. 基于单片机实现的供暖系统最佳启停自校正(STR)调节器7. 单片机控制的二级倒立摆系统的研究8. 基于增强型51系列单片机的TCP/IP协议栈的实现 9. 基于单片机的蓄电池自动监测系统 10. 基于32位嵌入式单片机系统的图像采集与处理技术的研究11. 基于单片机的作物营养诊断专家系统的研究 12. 基于单片机的交流伺服电机运动控制系统研究与开发 13. 基于单片机的泵管内壁硬度测试仪的研制 14. 基于单片机的自动找平控制系统研究 15. 基于C8051F040单片机的嵌入式系统开发 16. 基于单片机的液压动力系统状态监测仪开发 17. 模糊Smith智能控制方法的研究及其单
32、片机实现 18. 一种基于单片机的轴快流CO,2激光器的手持控制面板的研制 19. 基于双单片机冲床数控系统的研究 20. 基于CYGNAL单片机的在线间歇式浊度仪的研制 21. 基于单片机的喷油泵试验台控制器的研制 22. 基于单片机的软起动器的研究和设计 23. 基于单片机控制的高速快走丝电火花线切割机床短循环走丝方式研究 24. 基于单片机的机电产品控制系统开发 25. 基于PIC单片机的智能手机充电器 26. 基于单片机的实时内核设计及其应用研究 27. 基于单片机的远程抄表系统的设计与研究 28. 基于单片机的烟气二氧化硫浓度检测仪的研制 29. 基于微型光谱仪的单片机系统 30.
33、单片机系统软件构件开发的技术研究 31. 基于单片机的液体点滴速度自动检测仪的研制32. 基于单片机系统的多功能温度测量仪的研制 33. 基于PIC单片机的电能采集终端的设计和应用 34. 基于单片机的光纤光栅解调仪的研制 35. 气压式线性摩擦焊机单片机控制系统的研制 36. 基于单片机的数字磁通门传感器 37. 基于单片机的旋转变压器-数字转换器的研究 38. 基于单片机的光纤Bragg光栅解调系统的研究 39. 单片机控制的便携式多功能乳腺治疗仪的研制 40. 基于C8051F020单片机的多生理信号检测仪 41. 基于单片机的电机运动控制系统设计 42. Pico专用单片机核的可测性设
34、计研究 43. 基于MCS-51单片机的热量计 44. 基于双单片机的智能遥测微型气象站 45. MCS-51单片机构建机器人的实践研究 46. 基于单片机的轮轨力检测 47. 基于单片机的GPS定位仪的研究与实现 48. 基于单片机的电液伺服控制系统 49. 用于单片机系统的MMC卡文件系统研制 50. 基于单片机的时控和计数系统性能优化的研究 51. 基于单片机和CPLD的粗光栅位移测量系统研究 52. 单片机控制的后备式方波UPS 53. 提升高职学生单片机应用能力的探究 54. 基于单片机控制的自动低频减载装置研究 55. 基于单片机控制的水下焊接电源的研究 56. 基于单片机的多通道
35、数据采集系统 57. 基于uPSD3234单片机的氚表面污染测量仪的研制 58. 基于单片机的红外测油仪的研究 59. 96系列单片机仿真器研究与设计 60. 基于单片机的单晶金刚石刀具刃磨设备的数控改造 61. 基于单片机的温度智能控制系统的设计与实现 62. 基于MSP430单片机的电梯门机控制器的研制 63. 基于单片机的气体测漏仪的研究 64. 基于三菱M16C/6N系列单片机的CAN/USB协议转换器 65. 基于单片机和DSP的变压器油色谱在线监测技术研究 66. 基于单片机的膛壁温度报警系统设计 67. 基于AVR单片机的低压无功补偿控制器的设计 68. 基于单片机船舶电力推进电
36、机监测系统 69. 基于单片机网络的振动信号的采集系统 70. 基于单片机的大容量数据存储技术的应用研究 71. 基于单片机的叠图机研究与教学方法实践 72. 基于单片机嵌入式Web服务器技术的研究及实现 73. 基于AT89S52单片机的通用数据采集系统 74. 基于单片机的多道脉冲幅度分析仪研究 75. 机器人旋转电弧传感角焊缝跟踪单片机控制系统 76. 基于单片机的控制系统在PLC虚拟教学实验中的应用研究77. 基于单片机系统的网络通信研究与应用 78. 基于PIC16F877单片机的莫尔斯码自动译码系统设计与研究79. 基于单片机的模糊控制器在工业电阻炉上的应用研究 80. 基于双单片
37、机冲床数控系统的研究与开发 81. 基于Cygnal单片机的C/OS-的研究82. 基于单片机的一体化智能差示扫描量热仪系统研究 83. 基于TCP/IP协议的单片机与Internet互联的研究与实现 84. 变频调速液压电梯单片机控制器的研究 85. 基于单片机-免疫计数器自动换样功能的研究与实现 86. 基于单片机的倒立摆控制系统设计与实现 87. 单片机嵌入式以太网防盗报警系统 88. 基于51单片机的嵌入式Internet系统的设计与实现 89. 单片机监测系统在挤压机上的应用 90. MSP430单片机在智能水表系统上的研究与应用 91. 基于单片机的嵌入式系统中TCP/IP协议栈的
38、实现与应用92. 单片机在高楼恒压供水系统中的应用 93. 基于ATmega16单片机的流量控制器的开发 94. 基于MSP430单片机的远程抄表系统及智能网络水表的设计95. 基于MSP430单片机具有数据存储与回放功能的嵌入式电子血压计的设计 96. 基于单片机的氨分解率检测系统的研究与开发 97. 锅炉的单片机控制系统 98. 基于单片机控制的电磁振动式播种控制系统的设计 99. 基于单片机技术的WDR-01型聚氨酯导热系数测试仪的研制 100. 一种RISC结构8位单片机的设计与实现 101. 基于单片机的公寓用电智能管理系统设计 102. 基于单片机的温度测控系统在温室大棚中的设计与实现103. 基于MSP430单片机的数字化超声电源的研制 104. 基于ADC841单片机的防爆软起动综合控制器的研究105. 基于单片机控制的井下低爆综合保护系统的设计 106. 基于单片机的空调器故障诊断系统的设计研究 107. 单片机实现的寻呼机编码器 108. 单片机实现的鲁棒MRACS及其在液压系统中的应用研究 109. 自适应控制的单片机实现方法及