1、已知规律,数字题24 观察下列等式: 、 、 、 用含自然数n的等式表示这种规律为 。28 德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数):第一行 第二行 第三行 第四行 第五行 根据前五行的规律,可以知道第六行的数依次是: 15. 观察下列等式: 第一行 3=41 第二行 5=94 第三行 7=169 第四行 9=2516 按照上述规律,第n行的等式为_ 16 有一列数,从第二个数开始,每一个数都等于与它前面那个数的倒数的差,若,则为()2 观察下列顺序排列的等式:9011,91211,92321,93431,94541, 猜想:第n个等式(n为正整数
2、)应为_3. 观察下列算式:,通过观察,用你所发现的规律确定的个位数字是 ( )A. 2 B. 4 C.6 D. 84 观察下列各式:13=+21, 24=+22, 35=+23,请你将猜想到的规律用自然数n(n1)表示出来: 。1观察图(13)的点阵图和相应的等式,探究其中的规律:(1)在和后面的横线上分别写出相应的等式;1=12;1+3=22;1+2+5=32; ; ;图(13) (2)通过猜想写出与第n个点阵相对应的等式.3如图(11),将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪成四个小正方形,如此继续下去,根据以上操作方法,请你填
3、写下表:操作次数N12345N正方形的个数4710(第14题)29 下列是三种化合物的结构式及分子式,如果按其规律,则后一种化合物的分子式应该是 14。26. 用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:(1)第4个图案中有白色纸片 张;(2)第n个图案中有白色纸片 张.21 下列图案由边长相等的黑、白两色正方形按一定规律拼接而成。依次规律,第5个图案中白色正方形的个数为 。第1个第2个第3个第09题图22 用同样大小的正方形按下列规律摆放,将重叠部分涂上颜色,下面的图案中,第n个图案中正方形的个数是 。n=1n=2n=3 25. 观察下列图形,按规律填空: 1 1+3
4、 4+5 9+7 16+_ 36+_18. 按如下规律摆放三角形:则第(4)堆三角形的个数为_;第(n)堆三角形的个数为_.20 如图,图,图,图,是用围棋棋子摆成的一列具有一定规律的“山”字则第个“山”字中的棋子个数是 图图图图(第20题)14 下图是某同学在沙滩上用石于摆成的小房子观察图形的变化规律,写出第n个小房子用了 块石子15 为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛如图所示:按照上面的规律,摆个“金鱼”需用火柴棒的根数为( )ABCD12 下面是用棋子摆成的“上”字:第一个“上”字 第二个“上”字 第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(
5、1)第四、第五个“上”字分别需用 和 枚棋子;(2分)(2)第n个“上”字需用 枚棋子(1分)13. 将一张长方形的纸对折,如图5所示可得到一条折痕(图中虚线)续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕如果对折n次,可以得到 条折痕、 如图:是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边上摆20(即20)根时,需要的火柴棍总数为 根。9(2004年山东日照)如图(6),都是由边长为1的正方体叠成的图形。例如第个图形的表面积为6个平方单位,第个图形的表面积为18个平方单位,第个图形的表面积是36个平方单位。依此规律,则第
6、个图形的表面积 个平方单位。. 木材加工厂堆放木料的方式如图所示:依此规律可得出第6堆木料的根数是 。第16题图17 柜台上放着一堆罐头,它们摆放的形状见右图:第一层有听罐头,第二层有听罐头,第三层有听罐头,根据这堆罐头排列的规律,第(为正整数)层有 听罐头(用含的式子表示) 在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点请你观察图中正方形A1B1C1D1、A2B2C2D2、A3B3C3D3每个正方形四条边上的整点的个数,推算出正方形A10B10C10D10四条边上的整点共有个.10 如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,按照这
7、样的规律排列下去,则第9个图形由_个圆组成。(第10题图)第17题图16. 下面是按照一定规律画出的一列“树型”图: 图(1)是一个黑色的正三角形,顺次连结它的三边的中点,得到如图(2)所示的第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形。如此继续作下去,则在得到的第6个图形中,白色的正三角形的个数是 图(1)图(2)图(3) 1. (苏州市)如图1,小明作出了边长为1的第1个正A1B1C1,算出了正A1B1C1的面积.然后分别取A1B1C1的三边中点A2、B2、C2,作出了第2个正A2B2C2,算出了正A2B2C
8、2的面积.用同样的方法,作出了第3个正A3B3C3,算出了正A3B3C3的面积,由此可得,第10个正A10B10C10的面积是() 2(怀化市)如图2,A1,B1,C1分别是BC,AC,AB的中点,A2,B2,C2分别是B1C1,A1C1,A1B1的中点这样延续下去已知ABC的周长是1,A1B1C1的周长是L1,A2B2C2的周长是L2AnBnCn的周长是Ln,则Ln8.(福州市)如图4,AOB=45,过OA上到点O的距离分别为1,3,5,7,9,11的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S1,S2,S3,S4观察图中的规律,求出第10个黑色梯形的面积S10=22
9、.(金华市)学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时刻,身高为1.6m的小明(AB)的影子BC的长是3m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m.(1)请你在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;(2)求路灯灯泡的垂直高度GH;(3)如果小明沿线段BH向小颖(点H)走去,当小明走到BH中点B1处时,求其影子B1C1的长;当小明继续走剩下路程的到B2处时,求影子B2C2的长;当小明继续走剩下路程的到B3处时,按此规律继续走下去,当小明走剩下路程的到Bn处时,其影子BnCn的长m.(直接用n的代数式表示)23.(贵阳市)如图5,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,(1)“17”在射线上;(2)请任意写出三条射线上数字的排列规律;(3)“2007”在哪条射线上?11 如果有2007名学生排成一列,按1、2、3、4、5、4、3、2、1、2、3、4、5、4、3、2、1的规律报数,那么第2007名学生所报的数是 2010.0422毛宇星