资源描述
已知规律,数字题
24. 观察下列等式: 、 、 、 ……
用含自然数n的等式表示这种规律为 。
28. 德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数):
第一行
第二行
第三行
第四行
第五行
… …… ……
根据前五行的规律,可以知道第六行的数依次是:
15. 观察下列等式: 第一行 3=4-1
第二行 5=9-4
第三行 7=16-9
第四行 9=25-16
… …
按照上述规律,第n行的等式为____________
16. 有一列数,,,,,从第二个数开始,每一个数都等于与它前面那个数的倒数的差,若,则为( )
A. B. C. D.
2. 观察下列顺序排列的等式:
9×0+1=1,
9×1+2=11,
9×2+3=21,
9×3+4=31,
9×4+5=41,
…… .
猜想:第n个等式(n为正整数)应为____________________________.
3. 观察下列算式:,,,,,,,通过观察,用你所发现的规律确定的个位数字是 ( )
A. 2 B. 4 C.6 D. 8
4. 观察下列各式:1×3=+2×1,
2×4=+2×2,
3×5=+2×3,
请你将猜想到的规律用自然数n(n≥1)表示出来: 。
1.观察图(13)的点阵图和相应的等式,探究其中的规律:
(1)在④和⑤后面的横线上分别写出相应的等式;
……
……
①1=12;
②1+3=22;
③1+2+5=32;
④ ;
⑤ ;
图(13)
(2)通过猜想写出与第n个点阵相对应的等式______________.
3.如图(11),将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪成四个小正方形,如此继续下去,……,根据以上操作方法,请你填写下表:
操作次数N
1
2
3
4
5
…
N
…
正方形的个数
4
7
10
…
…
(第14题)
29. 下列是三种化合物的结构式及分子式,如果按其规律,则后一种化合物的分子式应该是 .14。
26. 用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:
(1)第4个图案中有白色纸片 张;
(2)第n个图案中有白色纸片 张.
21. 下列图案由边长相等的黑、白两色正方形按一定规律拼接而成。依次规律,第5个图案中白色正方形的个数为 。
…
第1个
第2个
第3个
第09题图
22. 用同样大小的正方形按下列规律摆放,将重叠部分涂上颜色,下面的图案中,第n个图案中正方形的个数是 。
n=1
n=2
n=3
……
● ●
● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ● ●
● ● ●
● ● ●
● ● ●
25. 观察下列图形,按规律填空:
●
…
…
…
1 1+3 4+5 9+7 16+___ … 36+____
18. 按如下规律摆放三角形:
则第(4)堆三角形的个数为_____________;第(n)堆三角形的个数为________________.
20. 如图,图①,图②,图③,……是用围棋棋子摆成的一列具有一定规律的“山”字.则第个“山”字中的棋子个数是 .
……
图①
图②
图③
图④
(第20题)
14. 下图是某同学在沙滩上用石于摆成的小房子.
观察图形的变化规律,写出第n个小房子用了 块石子.
15. 为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:
……
①
②
③
按照上面的规律,摆个“金鱼”需用火柴棒的根数为( )
A. B. C. D.
12. 下面是用棋子摆成的“上”字:
第一个“上”字 第二个“上”字 第三个“上”字
如果按照以上规律继续摆下去,那么通过观察,可以发现:
(1)第四、第五个“上”字分别需用 和 枚棋子;(2分)
(2)第n个“上”字需用 枚棋子.(1分)
13. 将一张长方形的纸对折,如图5所示可得到一条折痕(图中虚线).续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕.如果对折n次,可以得到 条折痕.
8、 如图:是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边上摆20(即=20)根时,需要的火柴棍总数为 根。
9.(2004年山东日照)如图(6),都是由边长为1的正方体叠成的图形。
例如第①个图形的表面积为6个平方单位,第②个图形的表面积为18个平方单位,第③个图形的表面积是36个平方单位。依此规律,则第⑤个图形的表面积 个平方单位。
6. 木材加工厂堆放木料的方式如图所示:依此规律可得出第6堆木料的根数是 。
第16题图
17. 柜台上放着一堆罐头,它们摆放的形状见右图:
第一层有听罐头,
第二层有听罐头,
第三层有听罐头,
……
根据这堆罐头排列的规律,第(为正整数)层
有 听罐头(用含的式子表示).
7. 在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形A1B1C1D1、A2B2C2D2、A3B3C3D3……每个正方形四条边上的整点的个数,推算出正方形A10B10C10D10四条边上的整点共有 个.
10. 如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________个圆组成。
……
(第10题图)
⑴
⑵
⑶
⑷
⑸
……
第17题图
16. 下面是按照一定规律画出的一列“树型”图:
5. 图(1)是一个黑色的正三角形,顺次连结它的三边的中点,得到如图(2)所示的第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形。如此继续作下去,则在得到的第6个图形中,白色的正三角形的个数是
图(1)
图(2)
图(3)
……
1. (苏州市)如图1,小明作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积.然后分别取△A1B1C1的三边中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积.用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积……,由此可得,第10个正△A10B10C10的面积是( )
2.(怀化市)如图2,A1,B1,C1分别是BC,AC,AB的中点,A2,B2,C2分别是B1C1,A1C1,A1B1的中点…这样延续下去.已知△ABC的周长是1,△A1B1C1的周长是L1,△A2B2C2的周长是L2…AnBnCn的周长是Ln,则Ln
8.(福州市)如图4,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11…的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S1,S2,S3,S4….观察图中的规律,求出第10个黑色梯形的面积S10= .
22.(金华市)学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时刻,身高为1.6m的小明(AB)的影子BC的长是3m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m.
(1)请你在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;
(2)求路灯灯泡的垂直高度GH;
(3)如果小明沿线段BH向小颖(点H)走去,当小明走到BH中点B1处时,求其影子B1C1的长;当小明继续走剩下路程的到B2处时,求影子B2C2的长;当小明继续走剩下路程的到B3处时,……按此规律继续走下去,当小明走剩下路程的到Bn处时,其影子BnCn的长 m.(直接用n的代数式表示)
23.(贵阳市)如图5,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….
(1)“17”在射线 上;
(2)请任意写出三条射线上数字的排列规律;
(3)“2007”在哪条射线上?
11. 如果有2007名学生排成一列,按1、2、3、4、5、4、3、2、1、2、3、4、5、4、3、2、1……的规律报数,那么第2007名学生所报的数是 .
2010.04.22
毛宇星
展开阅读全文