收藏 分销(赏)

面向大电流密度电解水的碳基催化剂研究进展.pdf

上传人:自信****多点 文档编号:2988776 上传时间:2024-06-12 格式:PDF 页数:16 大小:20.85MB
下载 相关 举报
面向大电流密度电解水的碳基催化剂研究进展.pdf_第1页
第1页 / 共16页
面向大电流密度电解水的碳基催化剂研究进展.pdf_第2页
第2页 / 共16页
面向大电流密度电解水的碳基催化剂研究进展.pdf_第3页
第3页 / 共16页
亲,该文档总共16页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Cite this:NewCarbonMaterials,2024,39(1):1-16DOI:10.1016/S1872-5805(24)60831-0Carbon-based electrocatalysts for water splitting athigh-current-densities:A reviewCHENYu-xiang1,2,*,ZHAOXiu-hui3,DONGPeng2,ZHANGYing-jie2,ZOUYu-qin4,*,WANGShuang-yin4(1.Faculty of Material Science and Engineering,Kunming U

2、niversity of Science and Technology,Kunming 650093,China;2.National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology,Key Laboratory of Advanced BatteryMaterials of Yunnan Province,Kunming University of Science and Technology,Kunming 650093,China;3

3、.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China;4.State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,College of Chemistry and Chemical Engineering,Advanced Catalytic Engineering Re-search Center of the Ministry of Education,Hunan

4、University,Changsha 410082,China)Abstract:Electrocatalyticwatersplittingisapromisingstrategytogeneratehydrogenusingrenewableenergyundermildcondi-tions.Carbon-basedmaterialshaveattractedattentioninelectrocatalyticwatersplittingbecauseoftheirdistinctivefeaturessuchashighspecificarea,highelectronmobili

5、tyandabundantnaturalresources.Hydrogenproducedbyindustrialelectrocatalyticwatersplittinginalargequantityrequireselectrocatalysisatalowoverpotentialatalargecurrentdensity.Substantialeffortsfocusedonfundamentalresearchhavebeenmade,whilemuchlessattentionhasbeenpaidtothehigh-current-densitytest.Thereare

6、manydis-tinctdifferencesinelectrocatalysistosplitwaterusinglowandhighcurrentdensitiessuchasthebubblephenomenon,localenviron-mentaroundactivesites,andstability.Recentresearchprogressoncarbon-basedelectrocatalystsforwatersplittingatlowandhighcurrentdensitiesissummarized,significantchallengesandprospec

7、tsforcarbon-basedelectrocatalystsarediscussed,andpromisingstrategiesareproposed.Key words:Electrocatalyticwatersplitting;Carbon-basedmaterial;Bubble;Highcurrentdensity;Decouple1IntroductionHydrogen emerges global wide applications inpetroleumrefining,industrialproductionofammoniaandmethanol,fuelcell

8、s,andmetallurgicalindustry12.Comparedwithsteamreformingofmethanolandcoalgasification that produce hydrogen,electrochemicalwatersplittinghasvariousadvantages3,suchashighpurity carbon-free hydrogen,use of renewablesources,nontoxic reagent and scale flexibility46.Typically,hydrogen evolution reaction(H

9、ER)andoxygenevolutionreaction(OER)arethetwostepsinelectrocatalyticwatersplitting7.OERrequires4elec-tronsduringtheprocess,while2electronsareneededinHER8.Besides,alargerthanthethermodynamicpotentialshouldberequiredinelectrolysisduetotheintrinsicbarriers9.Reducingtheoverpotentialanden-hancingthestabili

10、tyisofenormouseconomicbenefittorealizeindustrialapplications1011.Infundamental laboratory research at low cur-rentdensities12,thechargestateofcarbon-basedcata-lysts can be easily regulated through engineeringstructuredefects,heteroatomengineering,heterojunc-tionengineering,andstructureregulation13.F

11、orex-ample,defective carbon materials and carbon-basednoble/non-noblemetalmaterialsarepotentialsubsti-tutesfornoblemetalcatalystsduetotheirmultiplesu-periorities14,suchasexcellentelectronicconductiv-ity,high surface area,excellent resistance to corro-sion,lowcostandstructuralflexibility.Breakingthes

12、p2carbonlatticewithelectroneutralitycanleadtoune-venchargedistributioninthecarbonmatrixthatserveasnewelectrocatalyticactivesites.Aseriesofdefect-ivecarbonelectrocatalystsexhibitingsuperiorHERorReceived date:2023-10-16;Revised date:2023-11-29Corresponding author:CHENYu-xiang,Professor.E-mail:;ZOUYu-q

13、in,Professor.E-mail:yuqin_Author introduction:CHENYu-xiang,Professor.E-mail:Homepage:http:/ carbon-based catalysts are able to achievemore excellent electrocatalytic performance by themodificationwithmetalspecies.Besides,thechargetransferbetweenthecarbonhostandmetalormetalcompounds can regulate the

14、electronic structure ofeachcomponent1516.Owingtothemodificationbymetalspecies,carbon-basedcatalystscanachievein-creasedelectrocatalyticperformance.Theinterconnectionofthechargetransferpathoncarbon-basedmaterialsandtheelectrocatalyticwa-ter splitting behavior have been reviewed previ-ously12.Although

15、 great progress in advanced elec-trocatalysts under laboratory conditions has beenachieved1719,thelaboratoryresearchisusuallycar-riedoutindilutesolutionatalowcurrentdensity20.Actually,theoptimizedelectrocatalysts,exhibitinganexcellentHERandOERperformanceatalowcurrentdensityusually,donotdisplayanexpe

16、ctedperform-ance at a high current density21.Because currentdensitygreatlyimpactstheelectrontransferatthein-terfaceof electrocatalyst-electrolyte and electrocata-lyst-support22.Forexample,MoS2/Mo2Ccatalystde-livers a commonplace electrocatalytic performancecomparedwithPtatalowcurrentdensity.Incontra

17、st,MoS2/Mo2Ccatalystrequiresmuchloweroverpoten-tials to realize high current densities(191 mV 500mAcm2)thancommercialPtfoil(567mV500mAcm2)22.Theabovetremendousperformancedifferences demonstrate that the anode and cathodeprocesses of water splitting become complicated atlargecurrentdensities2329.Thed

18、ifferenceintestingcurrentdensityleadstoasignificantdiscrepancyinelectrocatalystdesignandelectrodedesign30.Inageneraltest,anelectrocata-lystmixedwithNafionisusuallyloadedonaglasscarbon substrate to form a thin film.The thin filmconfigurationusuallyemployslowloadinglevelsoflessthan1mgcm2,asaresultwell

19、masstransferandfluent release of generated hydrogen and oxygenbubblescanberealizedwhenthecurrentdensityislow(0.05 VRHEHydrogen evolutionProduct:H2Potential:1.23 VRHEOrganic oxidationProduct:chemicalsOnset potential:1 VRHECurrent density0.20.40.6Potential(vs.RHE)/VCell voltagePlatformchemicalsValue-a

20、ddedchemicalsProduct/useFuranic polyesterinterleukin inhibitorOOOOOOOOHOOHHMFCAH2OHOHFuroic acidFurfuralHMFElectrooxidationOrganic synthesismedicinesperfumesfuroate esters0.81.01.21.41.6(b)Cathode reactionBiomassfeedstocksStarchCelluloseHemicelluloseFig.7Waterelectrolysissystemswithvariousanodereact

21、ions107.(a)Comparisonofvariousanodereactionsforwaterelectrolysis.(b)Electrochemistry-in-volvedconversionpathfrombiomassfeedstockintovalue-addedchemicals.Reproducedwithpermission10新型炭材料(中英文)第39卷electrocatalyticcatalystduetotheinterfaceforce,es-peciallyathighcurrentdensities,leadingtoreducedaccessible

22、solid-liquidinterfacecontactareaandlim-itedmassandelectrontransfer.Rationalengineering,nano-microstructureandchemicalcoatingtocreateuniquesuperaerophobicfeaturesatthecatalystsur-facearefavorablyusedtoenhancetheHERperform-anceathighcurrentdensities118,whichleadstoalowinterfacial adhesion on the inter

23、face of electrolyte-catalyst,enhancesthereleaseofgeneratedhydrogenbubblesfromtheelectrocatalystelectrodesurfaceandrealizestheincreasedexposureextentofelectrocata-lyticactivesitestothesurroundingelectrolyte79.Stability is another key concern for evaluatingtheelectrocatalystperformance,includingmechan

24、icalandchemicalstabilities.Inthebinderandbinder-freesystems,themechanicalstabilityisgreatlyinfluencedbytheadhesionstrengthamongthesupport,theelec-trocatalystsandthebubble119.Thechemicalstabilityisgreatlyaffectedbytheresistancetocorrosionofthesupportandtheelectrocatalystinaliquidmediumun-deroxidation

25、120,corrosionandreduction121.Besides,conventionalcarbon-basedsupportsandcarbon-basedcatalystsarepronetopassivationordissolutionunderanoxidative environment,especially at high poten-tials.Exploringadvancedbinderandsurfacechemic-al modification method is vital for the powder-sup-portsystemelectrocatal

26、yticelectrodeinelectrochem-icalwatersplitting122.HERandOERarebothinterfacialsensitivereac-tions.Theinterfacialmicroenvironmentisinvolvedintheelectrocatalyticprocess123.Thefastdecreasedre-actantconcentrationneartheelectrocatalystsmayde-pressthestabilityunderhighcurrentdensities.Sub-stantialconvention

27、alstrategieshavebeenmadetoen-hancethekineticsoftheHERandOER.However,theseattemptscannotchangethefeatureofthelowconcentrationofprotonsinanon-acidicmedium124.Hence,generatingalocalacidicenvironmentbyafa-vorableelectrodesysteminnon-acidicmediaismoreeffectiveforenhancingtheelectrocatalyticperform-anceof

28、thesamecatalyst125.Engineeringrationalandmultifunctionalcocatalystsincarbon-basedmaterialseffectivelysolvestheabovepoints126.Todate,substantialattemptshavebeencontrib-uted to develop new and advanced solid polymermembranes.Benefitingfromtheadvantagesofanionorprotonsolidexchangemembrane,waterelectrol

29、ys-iscanbecarriedoutathugepressuredifferences.Inrecent years,substantial works have been done onelectrocatalyticwatersplitting,butmostofthemfo-cusedonincreasingtheefficiencyofHERandOERthemselves.However,theefficientformationofoxy-genandhydrogenisoflittleuseunlessgeneratedoxy-genandhydrogencanbekepts

30、eparatetotally.Anditisstillchallengingtorealizetheadequateseparationof oxygen and hydrogen upon electrolysis127.De-couplingHERandOERofferasolutiontoavoidthesechallengesbygeneratingoxygenandhydrogenindif-ferentelectrochemicalcells128atdifferenttimesandatdifferentrates129.Muchmoreattentionshouldbepaid

31、toshorteningthegapbetweenindustrialapplica-tionandfundamentalresearch.Apartfromtheaboveissues,continuedattentionisworthtobepaidtoothervitalconcernstoincreasetheactivityandstabilityofcarbon-basedmaterialsforelectrocatalyticwatersplitting130,suchastheelectro-lyte131132,environmentconditionsincludingth

32、epres-sure133andtemperature134135,flowcell136andheatmanagement137138.AcknowledgementsThisworkwassupportedbyChinaPostdoctoralScienceFoundation(2020M672471).References Chen M,Kitiphatpiboon N,Feng C,et al.Recent progress intransition-metal-oxide-basedelectrocatalystsfortheoxygenevolution reaction in n

33、atural seawater splitting:A criticalReviewJ.eScience,2023,3(2):100111.1Ye K,Chai Z,Gu J,et al.BiOI BiVO4 photoanodes withsignificantlyimprovedsolarwatersplittingcapability:p-njunctionto expand solar adsorption range and facilitate charge carrierdynamicsJ.NanoEnergy,2015,18:222-231.2ChiaX,PumeraMJNC.

34、Characteristicsandperformanceoftwo-dimensional materials for electrocatalysisJ.Nature Catalysis,2018,1(12):909-921.3KouT,WangS,LiJL.Perspectiveonhigh-ratealkalinewater4第1期CHENYu-xiangetal:Carbon-basedelectrocatalystsforwatersplittingathigh-current-densities:Areview11splittingJ.ACSMaterialsLetters,20

35、21,3(2):224-234.Ayers K J.High efficiency pem water electrolysis:Enabled byadvancedcatalysts,membranes,andprocessesJ.CurrentOpinioninChemicalEngineering,2021,33:100719.5WangJ,GaoY,KongH,etal.Non-precious-metalcatalystsforalkalinewaterelectrolysis:Operandocharacterizations,theoreticalcalculations,and

36、recentadvancesJ.ChemicalSocietyReviews,2020,49(24):9154-9196.6YangM,LiY,DongCL,etal.CorrelatingthevalencestatewiththeadsorptionbehaviorofaCu-basedelectrocatalystforfurfuraloxidationwithanodichydrogenproductionreactionJ.AdvancedMaterials,2023,35(39):2304203.7Yu X,Yu Z Y,Zhang X L,et al.Superaerophobi

37、c nickelphosphide nanoarray catalyst for efficient hydrogen evolution atultrahighcurrentdensitiesJ.JournaloftheAmericanChemicalSociety,2019,141(18):7537-7543.8Sun H,Xu X,Kim H,et al.Electrochemical water splitting:Bridging the gaps between fundamental research and industrialapplicationsJ.Energy Envi

38、ronmental Materials,2023,6(5):e12441.9GaoH,LiuJ,ZhangZ,etal.Electrochemicaletchinginducedhigh-valencecobaltwithdefectssiteforboostingelectrochemicalwater splittingJ.Chemical Engineering Journal,2023,463:142224.10KongZ,MaswadehY,VargasJ,etal.Originofhighactivityanddurability of twisty nanowire alloy

39、catalysts under oxygenreduction and fuel cell operating conditionsJ.Journal of theAmericanChemicalSociety,2020,142(3):1287-1299.11TaoL,WangY,ZouY,etal.Chargetransfermodulatedactivityofcarbon-basedelectrocatalystsJ.AdvancedEnergyMaterials,2019,10(11):1901227.12Zhang Y,Liu H,Zhao S,et al.Evolution of

40、defects inelectrocatalystsJ.AdvancedMaterials,2023,35(9):e2209680.13Jia Y,Yao X.Defects in carbon-based materials forelectrocatalysis:Synthesis,recognition,andadvancesJ.AccountofChemicalResearch,2023,56(8):948-958.14ZhangJ,XiaZ,DaiL.Carbon-basedelectrocatalystsforadvancedenergy conversion and storag

41、eJ.Science Advances,2015,1(7):e1500564.15WangJ,KongH,ZhangJ,etal.Carbon-basedelectrocatalystsforsustainableenergyapplicationsJ.ProgressinMaterialsScience2021,116:100717.16HuangZF,SongJ,DouS,etal.strategiestobreakthescalingrelationtowardenhancedoxygenelectrocatalysisJ.Matter2019,1(6):1494-1518.17Wei

42、C,Rao R R,Peng J,et al.Recommended practices andbenchmarkactivityforhydrogenandoxygenelectrocatalysisinwater splitting and fuel cellsJ.Advanced Materials,2019,31(31):1806296.18GuoLY,LiJF,LuZW,etal.Biomass-derivedcarbon-basedmulticomponent integration catalysts for electrochemical watersplittingJ.Che

43、mSusChem,2023,16(17):e202300214.19Salah A,Zhang L,Tan H,et al.Advanced Ru/Ni/WC NPCmulti-interfacialelectrocatalystforefficient,sustainablehydrogen20and chlor-alkali co-productionJ.Advanced Energy Materials,2022,12(21):2200332.DarbandGB,AliofkhazraeiM,ShanmugamS.Recentadvancesin methods and technolo

44、gies for enhancing bubble detachmentduring electrochemical water splittingJ.Renewable andSustainableEnergyReviews,2019,114:109300.21LuoY,TangL,KhanU,etal.MorphologyandsurfacechemistryengineeringtowardpH-universalcatalystsforhydrogenevolutionathighcurrentdensityJ.NatureCommunications,2019,10(1):269.2

45、2Luo Y,Zhang Z,Chhowalla M,et al.Recent advances in thedesignofelectrocatalystsforhigh-current-densitywatersplittingJ.AdvancedMaterials,2022,34(16):e2108133.23ZhaoZL,WangQ,HuangX,etal.Boostingtheoxygenevolutionreactionusingdefect-richultra-thinrutheniumoxidenanosheetsinacidic mediaJ.Energy Environme

46、ntal Science,2020,13(12):5143-5151.24ZhuJ,GuoY,LiuF,etal.Regulativeelectronicstatesaroundruthenium/ruthenium disulphide heterointerfaces for efficientwater splitting in acidic mediaJ.Angewandte ChemieInternationalEdition,2021,133(22):12436-12442.25WangY,JiaoY,YanH,etal.Vanadium-incorporatedCoP2withl

47、attice expansion for highly efficient acidic overall watersplittingJ.Angewandte Chemie International Edition,2022,134(12):e202116233.26YangJ,MohmadAR,WangY,etal.Ultrahigh-current-densityniobium disulfide catalysts for hydrogen evolutionJ.NatureMaterials,2019,18(12):1309-1314.27XuXX,ZhangNC,WangJY,et

48、al.Thesynthesisofiron-nitrogensitesembeddedinelectrospuncarbonnanofiberswithanexcellent oxygen reduction reaction activity in alkaline/acidicmediaJ.NewCarbonMater,2023,38(1):154-161.28YangF,LuoY,YuQ,etal.Adurableandefficientelectrocatalystfor saline water splitting with a current density exceeding20

49、00 mA cm2J.Advanced Functional Materials,2021,31(21):2010367.29ShinagawaT,Garcia-EsparzaAT,TakanabeKJSR.Insightontafelslopesfromamicrokineticanalysisofaqueouselectrocatalysis for energy conversionJ.Scientific Reports,2015,5(1):13801.30BaiX,PangQQ,DuX,etal.Integratingrunialloyins-dopeddefectivecarbon

50、forefficienthydrogenevolutioninbothacidicandalkalinemediaJ.ChemicalEngineeringJournal,2021,417:129319.31LiL,WangP,ShaoQ,etal.Metallicnanostructureswithlowdimensionality for electrochemical water splittingJ.ChemicalSocietyReviews,2020,49(10):3072-3106.32AkbarK,HussainS,TruongL,etal.Inducedsuperhydrop

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服