收藏 分销(赏)

2018高考数学解题技巧极坐标与参数方程.doc

上传人:天**** 文档编号:2938522 上传时间:2024-06-11 格式:DOC 页数:3 大小:262.50KB
下载 相关 举报
2018高考数学解题技巧极坐标与参数方程.doc_第1页
第1页 / 共3页
2018高考数学解题技巧极坐标与参数方程.doc_第2页
第2页 / 共3页
2018高考数学解题技巧极坐标与参数方程.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2018高考数学解题技巧解答题模板3:极坐标与参数方程1、 题型与考点(1) (2) (3) 2、【知识汇编】参数方程:直线参数方程: 为直线上的定点, 为直线上任一点到定点的数量;圆锥曲线参数方程:圆的参数方程:(a,b)为圆心,r为半径;椭圆的参数方程是;双曲线的参数方程是;抛物线的参数方程是极坐标与直角坐标互化公式:若以直角坐标系的原点为极点,x轴正半轴为极轴建立坐标系,点P的极坐标为,直角坐标为,则, , , 。解题方法及步骤(1)、参数方程与普通方程的互化化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数

2、方程的基本思路是引入参数,即选定合适的参数,先确定一个关系(或,再代入普通方程,求得另一关系(或).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标)例1、方程(为参数)表示的曲线是( )A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆解析:注意到t与互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含的项,即有,又注意到 ,即,可见与以上参数方程等价的普通方程为,显然它表示焦点在轴上,以原点为中心的双曲线的上支,选B.(2)、极坐标与直角坐标的互化利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题,这二者互化的前提条件是(1)极点与原点重合;(

3、2)极轴与轴正方向重合;(3)取相同的单位长度.设点P的直角坐标为,它的极坐标为,则或;若把直角坐标化为极坐标,求极角时,应注意判断点所在的象限(即角的终边的位置),以便正确地求出角.例2、极坐标方程表示的曲线是( ) A. 圆B. 椭圆C. 双曲线的一支D. 抛物线分析:这类问题需要将极坐标方程转化为普通方程进行判断.解析:由,化为直角坐标系方程为,化简得.显然该方程表示抛物线,故选D.(3)、参数方程与直角坐标方程互化例3:已知曲线的参数方程为(为参数),曲线的极坐标方程为 (1)将曲线的参数方程化为普通方程,将曲线的极坐标方程化为直角坐标方程; (2)曲线,是否相交,若相交请求出公共弦的长,若不相交,请说明理由解:(1)由得,曲线的普通方程为,即,曲线的直角坐标方程为;(2)圆的圆心为,圆的圆心为,两圆相交,设相交弦长为,因为两圆半径相等,所以公共弦平分线段, ,公共弦长为(4)利用参数方程求值域例题4、在曲线:上求一点,使它到直线:的距离最小,并求出该点坐标和最小距离.解:直线化成普通方程是,设所求的点为,则C到直线的距离,当时,即时,取最小值1 ,此时,点的坐标是.5)直线参数方程中的参数的几何意义例5、已知直线经过点,倾斜角,写出直线的参数方程;设与圆相交与两点,求点到两点的距离之积. 解 (1)直线的参数方程为,即 (2)把直线代入,得,则点到两点的距离之积为

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服