1、2023,45(2)DOI:10.13836/j.jjau.2023028江西农业大学学报 Acta Agriculturae Universitatis Jiangxiensishttp:/两株蒜头果内生木霉的物种鉴定及其对幼苗的促生作用研究王俊威1,雷小铃1,陈婉东2,潘悦3*,王娟3*(1.西南林业大学 地理与生态旅游学院,云南 昆明 650224;2.西南林业大学 林学院,云南 昆明 650224;3.西南林业大学 绿色发展研究院,云南 昆明 650224)摘要:【目的】鉴定两株蒜头果内生木霉并探讨其对幼苗生长发育及抗性水平的影响,为蒜头果内生微生物资源利用及优质苗木培育提供参考依据。
2、【方法】结合分子系统学和形态学方法鉴定两株蒜头果内生木霉,并对其产IAA和解钾能力进行定性和定量检测。将供试菌株接种于蒜头果幼苗,6个月后测定植株的生长性状、生物量、叶绿素含量及抗氧化酶活性,并对各测定指标进行相关性分析。【结果】经ITS、TEF和RPB2系统发育树分析以及菌落和微观形态观察,两株内生木霉分别鉴定为T.gamsii和T.koningiopsis。上述菌株均具有产IAA和解钾能力,其中T.gamsii的产IAA能力较强,为89.46 g/mL,T.koningiopsis的解钾能力较强,为29.26 g/mL。接种T.gamsii的蒜头果幼苗株高、叶片增量、茎粗和主根长较对照增加
3、了162.16%、140.74%、44.83%和37.06%,且与接种T.koningiopsis的处理组及对照差异显著。经T.koningiopsis接种处理的幼苗茎粗较对照增加16.09%,且与对照差异显著。接种T.gamsii的幼苗根部吸器数量最多,为35.60个,其次是接种T.koningiopsis的处理组,均与对照差异显著,而对照组的幼苗根部吸器最大直径为1.58 cm,显著高于接菌组。而且接种T.gamsii的幼苗地上、地下和全株鲜重、干重均与对照差异显著,接种T.koningiopsis的幼苗全株鲜重显著高于对照。与此同时,接种T.gamsii的处理组幼苗叶绿素含量最高,为3.
4、37 mg/g,其次是接种T.koningiopsis的处理组,二者分别较对照高出21.66%和7.58%,且均与对照差异显著。接种T.gamsii的幼苗叶片过氧化物酶(POD)和超氧化物歧化酶(SOD)活性最高,分别较对照高出 40.85%和 28.19%,接种 T.koningiopsis 的幼苗叶片 POD 活性较对照高出26.03%,且均与对照差异显著。此外,T.gamsii在蒜头果幼苗根系的定殖率为58.87%,T.koningiopsis的定殖率为52.16%。相关性分析表明,茎粗、吸器数量、全株鲜重、叶绿素含量及叶片POD活性除与最大吸器直径呈显著或极显著负相关外,与其余指标均呈
5、显著或极显著正相关。【结论】T.gamsii和T.koningiopsis对蒜头果幼苗生长、生物量增加、叶绿素含量提高及抗氧化酶活性增强有积极的促进作用,其中T.gamsii的促生效果更为显著,为蒜头果理想的促生菌。关键词:蒜头果;内生木霉;物种鉴定;促生作用中图分类号:S182 文献标志码:A 开放科学(资源服务)标识码(OSID):文章编号:1000-2286(2023)02-0273-12收稿日期:20220914 修回日期:20221215基金项目:国家自然科学基金项目(32160008)、云南省重大基础专项生物资源数字化开发应用项目(202002AA100007)和云南省云岭产业技术
6、领军人才项目(2018-212)Project supported by National Natural Science Foundation of China(32160008),Major Science and Technology Project of Yunnan Province(202002AA100007)and Special Project of Ten Thousand Talents Plan-Yunling Industrial Technology Leading Talents of Yunnan Province(2018-212)作者简介:王俊威,硕士生,o
7、rcid.org/0000-0003-1411-7878,;*通信作者:潘悦,副研究员,博士,主要从事植物微生物资源研究,orcid.org/0000-0003-2130-8234,;王娟,教授,博士,博士生导师,主要从事生物多样性研究,orcid.org/0000-0002-2868-9175,。王俊威,雷小铃,陈婉东,等.两株蒜头果内生木霉的物种鉴定及其对幼苗的促生作用研究 J.江西农业大学学报,2023,45(2):273-284.WANG J W,LEI X L,CHEN W D,et al.Identification of two endophytic Trichoderma St
8、rains in Malania oleifera and their growth promoting effects on seedlingsJ.Acta agriculturae universitatis Jiangxiensis,2023,45(2):273-284.江 西 农 业 大 学 学 报第 45 卷Identification of Two Endophytic Trichoderma Strains in Malania oleifera and Their Growth Promoting Effects on SeedlingsWANG Junwei1,LEI Xia
9、oling1,CHEN Wandong2,PAN Yue3*,WANG Juan3*(1.School of Geography and Ecotourism,Southwest Forestry University,Kunming 650224,China;2.College of Forestry,Southwest Forestry University,Kunming 650224,China;3.Eco-development Academy,Southwest Forestry University,Kunming 650224,China)Abstract:Objective
10、Two endophytic Trichoderma strains from Malania oleifera were identified and their effects on the growth and development of seedlings and the level of resistance were explored,thus providing reference for the utilization of microbial resources in M.oleifera and the cultivation of high-quality seedli
11、ngs.Method Two endophytic Trichoderma strains were identified as T.gamsii and T.koningiopsis by the molecular systematics and morphological methods,and their producing IAA and potassium resolving abilities were detected qualitatively and quantitatively.After 6 months inoculating with the tested stra
12、ins,the growth characteristics,biomass,chlorophyll content,and antioxidant enzyme activities of M.oleifera seedlings were measured,and the correlation analysis was conducted on the measured indexes.Result Through the phylogenetic tree analysis of ITS,TEF and RPB2,and observation of colony and microm
13、orphology,two endophytic Trichoderma strains were identified as T.gamsii and T.koningiopsis.The two strains both have the ability to produce IAA and resolve potassium.The production of IAA was stronger in T.gamsii,which was 89.46 g/mL,and the ability to dissolve potassium of T.koningiopsis were stro
14、nger,which was 29.26 g/mL.The plant height,leaf increment,stem diameter and main root length of the treatment inoculated with T.gamsii were 162.16%,140.74%,44.83%and 37.06%higher than those of the control,and there was significant differences in growth traits compared from the treatment inoculated w
15、ith T.koningiopsis and the control.The stem diameter of the treatment inoculated with T.koningiopsis increased by 16.09%,there was significant differences from that of the control.The number of haustoria in the root of the treatment inoculated with T.gamsii was the largest,which was 35.6,followed by
16、 the treatment inoculated with T.koningiopsis,and there were significant differences from the control.The maximum diameter of root haustorium of M.oleifera seedling was 1.58 cm in the control,which was significantly higher than that in the inoculation treatments.Furthermore,there were significant di
17、fferences in the fresh mass and dry mass between aboveground,underground and the whole plant between the treatment inoculated with T.gamsii and the control.There was significant differences in the fresh mass of the whole plant between the treatment inoculated with T.koningiopsis and the control.Mean
18、while,the chlorophyll content of the seedlings in this treatment inoculated with T.gamsii was the highest,which was 3.37 mg/g,followed by that of the treatment inoculated with T.koningiopsis,They were 21.66%and 7.58%higher than the control,respectively,and both were significantly different from the
19、control.The peroxidase(POD)activities and superoxide dismutase(SOD)activities in the leaves of the treatment inoculated with T.gamsii were the highest,which were 40.85%and 28.19%higher than those of the control,POD activity of the treatment inoculated with T.koningiopsis was 26.03%higher than that o
20、f the control,there were significant differences with the control.In addition,the colonization rate of T.gamsii in the root system of seedlings was 58.87%and the colonization rate of T.koningiopsis was 52.16%.The correlation analysis showed that the stem diameter,the number of haustorium,the fresh w
21、eight of the whole plant,the chlorophyll content and the PDA activity of leaves were significantly or extremely significantly negatively correlated with the maximum diameter of haustorium,and also significantly or extremely significantly positively correlated with other indicators.Conclusion T.gamsi
22、i and T.koningiopsis had positive effects on the seedings growth,and the increase of biomass,chlorophyll content and antioxidant enzyme activities of M.oleifera seedling.Since 274第 2 期王俊威等:两株蒜头果内生木霉的物种鉴定及其对幼苗的促生作用研究T.gamsii had a more significant growth promoting effect,it was an ideal growth promot
23、ing fungus for M.oleifera seedings.Keywords:Malania oleifera;endophytic Trichoderma;species identification;growth promoting effect【研究意义】蒜头果(Malania oleifera)属铁青树科蒜头果属,主要分布于我国云南东南部广南、富宁两县以及广西西部的部分石灰岩地区,为国家级珍稀濒危保护植物。蒜头果种仁油中富含神经酸,该物质能促进受损神经组织的修复与再生,故而被誉为植物油中的“液体黄金”1-2。随着蒜头果市场前景和应用价值的不断凸显,云南省广南、富宁两县积极开展
24、蒜头果人工种植,然而蒜头果幼苗造林存活率及保存率较低,且易受多种病害侵染3-4,因此研究蒜头果促进生长、提高抗性的方法是实现其种植产业持续健康发展的技术保障。【前人研究进展】在与植物长期的协同进化过程中,植物内生真菌成为决定植物健康和产量的关键因素之一,不仅与植物的营养摄取、生长发育及存活率紧密相关,也对植物免疫系统调节起着重要作用5。前期研究表明,木霉为蒜头果内生真菌的优势属6。据报道,内生木霉可代谢产生吲哚乙酸(IAA)、细胞分裂素和类植物生长素等多种植物生长调节剂刺激植物生长,同时降低高浓度植物外源激素对寄主生长产生的抑制作用7-9。而且,内生木霉通过增加不溶性化合物的溶解性以及微量营养
25、物质的可利用性,提高植物对矿质元素的摄取率10-11。大量研究表明,内生木霉可显著促进植物的种子萌发、组织分化、根系生长以及生物量和产量的增加12-14。此外,内生木霉可通过增强植物抗氧化系统能力,有效清除活性氧或阻止活性氧的产生,提高宿主对生物和非生物胁迫的耐受力15-16。【本研究切入点】目前国内外未见蒜头果内生木霉对其幼苗生长发育和抗性水平有何影响的报道。【拟解决的关键问题】本研究将对前期分离获得的两株蒜头果内生木霉进行物种鉴定,揭示其产IAA及解钾能力,并通过接种幼苗的生长性状、生物量、叶绿素含量及抗氧化酶活性测定,综合评价供试木霉的促生作用,为蒜头果微生物资源利用及优质苗木培育提供参
26、考数据。1 材料与方法1.1试验材料1.1.1供试菌株SF151和SF231于2019年4月分别采集自云南省文山州广南县健康蒜头果植株的根和茎,从表面消毒后的样品中分离获得6。1.1.2供试苗木2019年10月收集当年生大小一致且无病害症状的蒜头果种子,用50%多菌灵可湿性粉剂浸泡30 min后无菌水漂洗自然风干,河沙经高压灭菌后添加无菌水保持湿度,将浸泡后的种子置于河沙中沙藏4个月待萌发。营养钵使用75%乙醇溶液表面消毒,将萌发的蒜头果种子用灭菌混合基质(红土 腐殖土 珍珠岩=3 2 1)单株种植于营养钵,定期浇无菌水保持营养钵中土壤湿润,待蒜头果长至68片叶时进行接种试验。1.2供试菌株的
27、种类鉴定1.2.1分子学鉴定通过尿素提取法提取上述两株真菌的DNA17,分别对其DNA原液进行核糖体内转录间隔区(ITS)、转录延长因子(TEF)和RNA聚合酶大亚基(RPB2)3个基因片段的PCR扩增,相关引物和PCR反应条件参照Zhu等18和Chaverri等19。PCR产物经凝胶电泳检测送昆明硕擎生物科技有限公司进行双向测序。测序结果在CExpress中手动拼接校正后经NCBI比对,选出相似度较高且已发表的菌株作为参考,查阅文献并下载参考序列基于最大似然法(ML)和贝叶斯法(BI)构建系统发育树。使用 jModelTest 2.1.4构建最佳模型,系统发育树在MrBayes 3.1.2中
28、采用Markov Chain Monte Carlo(MCMC)法构建,去除25%的最初结果,后验概率经最终的贝叶斯系统树计算20。最大似然法使用RAxML分析,靴带值重复计算1 000次21。1.2.2形态学鉴定将活化后的菌株转接至玉米葡萄糖培养基(CMD)、马铃薯葡萄糖培养基(PDA)和低营养琼脂培养基(SNA)平板,25 条件下黑暗培养520 d后观察菌落形态、质地以及颜色等特征。并 275江 西 农 业 大 学 学 报第 45 卷用灭菌解剖针挑取SNA培养基上的气生菌丝或疱状结构制备水玻片,显微镜下观察菌株的分生孢子梗、瓶梗、分生孢子形态及着生方式,每类结构测量30次。1.3促生功能测
29、定1.3.1产IAA能力测定供试菌株活化后接种于 PDB 液体培养基,经 180 r/min,28,12 d培养后抽滤菌丝收集发酵液。发酵液与Salkowski比色液等比例混合后静置30 min,根据显色结果对菌株的产IAA能力进行定性检测。混合液颜色越深,表明其产IAA能力越强。将显色的发酵液与Salkowski比色液等比例混合后采用紫外分光光度计测定其 OD530,并通过绘制标准曲线计算供试菌株的产 IAA活性。1.3.2解钾能力测定将木霉菌株接种于PDA培养基中28 暗培养7 d,用灭菌打孔器取直径5 mm的菌饼接种于解钾培养基培养20 d,若菌饼周围出现透明圈,表明该菌具有解钾活性,测
30、量透明圈直径,并通过四苯硼酸钠重量法测定菌株的解钾能力22。1.4幼苗接种效应研究取上述7个菌饼接种于600 mL PDB液体培养基,置于恒温振荡培养箱中180 r/min,28 培养96 h,经无菌滤纸过滤并通过血球计数板统计将菌液浓度稀释至1106 个/mL。试验设2个处理组和1个对照组,处理组每月通过灌根的方式定期施用50 mL供试菌液,对照组施用等量无菌水,共处理6次,每处理20个重复。每处理随机取10株幼苗测量施菌前和培养6个月后的幼苗株高、茎粗和叶片数,其中株高用钢卷尺测量植株茎基部到茎尖的距离,叶片数为整株幼苗所有叶片的数量,茎粗用游标卡尺测定茎基部直径。随后将植株取出清水洗净根
31、部后自然风干,测定其鲜重,105 杀青30 min,再65 烘干至恒重后测定其干重。每处理另取10株幼苗,采集第24片功能叶测定其叶绿素含量、SOD和POD活性,其中叶片叶绿素含量采用乙醇浸提比色法进行测定23,叶片的SOD和POD活性参照罗阳兰13进行测定,再将植株取出洗净根部后统计单株吸器数量和最大吸器直径。最后每株2段总长6 cm的侧根,剪成1 cm的根段通过KOH-台盼蓝染色法来观察接种真菌在蒜头果幼苗根部定殖情况并计算定殖率24。1.5数据统计使用 SPSS25.0对不同处理间幼苗的生长性状、生物量、叶绿素含量及抗氧化酶活性进行单因素方差分析,并对供试菌株接种幼苗后的各项测定指标进行
32、相关性分析。2 结果与分析2.1两株蒜头果内生木霉的物种鉴定如图1所示,经ITS、TEF和RPB2 3个片段构建系统发育树,SF231与SF151两株菌分别位于两个不同的分类单元。其中SF231与T.koningiopsis聚为一支,与T.koningiopsis CEN1386的贝叶斯和最大似然后验概率分别达到 1.00和 95。SF151与 T.gamsii GJS04-09位于相同支系,且贝叶斯和最大似然分别1.00和100。如图2所示,SF151在PDA培养基上25 培养7 d后菌落呈白色,菌丝致密。在SNA培养基中25 菌落白色,在CMD培养基上25 培养,菌丝颜色较浅呈黄绿色。分生
33、孢子梗树状,瓶梗中部略膨大,成对出现于单个或末端分枝,也会多个聚集,大小为(6.1-)7.1-10.5(-12.4)(1.4-)1.8-2.3(-2.8)m,长宽比(2.5-)3.7-4.9(-7.4)。分生孢子光滑,卵圆、椭圆或不规则椭圆形,大小(2.4-)2.7-3.9(-4.2)(2.2-)2.3-2.9(-3.3)m,长宽比(1.1-)1.2-1.4(-1.5)。SF231在PDA培养基上25 培养7 d菌落呈浅灰至深灰,菌丝致密。在SNA培养基中25 培养菌落浅灰色,在CMD培养基上25 培养,菌落透明状,边缘疱状结构聚合。分生孢子梗呈树状,瓶梗基部较窄,大小为(4.3-)5.4-9
34、.6(-10.6)(1.9-)2.0-2.4(-2.6)m,长宽比(2.0-)2.2-4.7(-5.0),分生孢子光滑,椭圆形,大小为(2.8-)2.9-3.8(-4.2)(2.2-)2.3-3.0(-3.2)m,长宽比(1.0-)1.2-1.6(-1.7)。结合两株内生木霉的系统发育分析和形态学特征,将SF151和SF231分别鉴定为T.gamsii和T.koningiopsis。276第 2 期王俊威等:两株蒜头果内生木霉的物种鉴定及其对幼苗的促生作用研究ac 15-1:菌株在3种培养基上的菌落形态(25)(a:PDA,7 d;b:SNA,7 d;c:CMD 7 d),d:主梗、分枝和瓶梗
35、;e:分生孢子;fh 23-1:菌株在3种培养基上的菌落形态(25)(f:PDA,7 d;g:SNA,7 d;h:CMD 7 d),i:主梗、分枝和瓶梗;j:分生孢子;标尺:5 m。a-c 15-1:Colony morphology of the strain on three media(25)(a on PDA,7 d;b on SNA,7 d;c on CMD,7 d),d:Conidiophores,branches and phialides e:Conidia;f-h 23-1:Colony morphology of the strain on three media(25)(
36、f on PDA,7 d;g on SNA,7 d;h on CMD,7 d),i:Conidiophores,branches and phialides j:Conidia;Scale bars:5 m.图2两株蒜头果内生木霉在不同培养基上的菌落形态和显微特征Fig.2Colony morphology and microscopic characteristics of two endophytic Trichoderma spp.on different media支持度在分支的节点标注,贝叶斯后验概率0.75和最大似然法的靴带值75用-标识,粗体字表示本研究中产生的序列。Suppor
37、t values were indicated at nodes,Bayesian posterior probabilities and Maximum Likelihood bootstrap 75 were recorded by-,bold type indicated sequences generated from this study.图1基于ITS、TEF和RPB2联合的贝叶斯系统发生树Fig.1Bayesian consensus tree generated from the DNA sequences of ITS,TEF and RPB2 277江 西 农 业 大 学
38、学 报第 45 卷2.2两株蒜头果内生木霉的促生功能2.2.1蒜头果内生木霉的产IAA能力如表1所示,IAA标准品与Salkowski比色液混合后显色反应为深红,产IAA活性为1 000 mg/L,T.gamsii发酵液与Salkowski比色液混合后显示为红色,活性为89.46 g/mL,T.koningiopsis发酵液的显色反应颜色较浅,活性为6.69 g/mL,结果表明,两株菌均具有IAA分泌能力,其中T.gamsii的产IAA能力较强。2.2.2蒜头果内生木霉的解钾能力T.gamsii和T.koningiopsis接种于解钾培养基后出现大小不同的透明圈,其中接种T.koningiop
39、sis的透明圈直径为36.22 mm,较接种T.gamsii(直径25.91 mm)的透明圈大。经定量检测,T.koningiopsis和T.gamsii的解钾活性分别为29.26 mg/L和11.55 mg/L(表2),由此表明两株菌均具有解钾活性,且T.koningiopsis的活性较高。2.3两株蒜头果内生木霉对幼苗的促生作用研究2.3.1接种蒜头果内生木霉对其幼苗的生长性状的影响如图3所示,接种T.gamsii 6个月后蒜头果幼苗的株高增量、叶片增量、茎粗和主根长分别为 9.7 cm、6.50 片、1.26 cm 和 16.20 cm,较对照增加了162.16%、140.74%、44.
40、83%和 37.06%,且与接种 T.koningiopsis 的处理和对照差异显著(P0.05)。经T.koningiopsis接种处理的幼苗茎粗较对照增加16.09%,且与对照差异显著(P0.05)。结果表明,接种两株内生木霉均能促进蒜头果幼苗的生长,其中T.gamsii的促生效果较为显著。2.3.2接种蒜头果内生木霉对其幼苗吸器数量和最大吸器直径的影响如图4所示,接种T.gamsii的处理组蒜头果幼苗根部吸器数量最多,为 35.60个,与接种 T.koningiopsis的处理组和对照差异显著(P0.05);接种T.koningiopsis的蒜头果幼苗根部吸器数量为25.70个,与对照差
41、异显著(P0.05)。而对照组的蒜头果幼苗根部吸器最大直径为1.58cm,显著高于接种T.gamsii和T.koningiopsis的处理组(P0.05)。表1两株蒜头果内生木霉的产IAA能力Tab.1IAA producing ability of two endophytic Trichoderma strains from M.oleifera测定项目Measurement items定性显色Qualitative color rendering定量测定/(gmL-1)Quantitative determination IAACK(IAA)1 000T.gamsii89.460.095
42、T.koningiopsis6.690.036CK(无菌水)CK(Sterile water)0数据表示为平均值标准误。The data were expressed as meanSE.表2两株蒜头果内生木霉的解钾能力Tab.2Potassium dissolving ability of two endophytic Trichoderma strains from M.oleifera测定项目 Measurement items定性测定 Qualitative determination透明圈直径/mm Diameter of transparent ring定量测定/(mgL-1)Qu
43、antitative determinationCK-T.gamsii25.910.4211.550.10T.koningiopsis36.220.1329.260.81数据表示为平均值标准误。The data were expressed as meanSE.278第 2 期王俊威等:两株蒜头果内生木霉的物种鉴定及其对幼苗的促生作用研究2.3.3接种蒜头果内生木霉对其幼苗生物量的影响如表3所示,接种T.gamsii的地上、地下和全株鲜重以及地上、地下和全株干重分别较对照增加 59.71%、33.06%、364.76%、59.47%、33.04%和 41.07%,其中地上、全株鲜重以及地上干重
44、与接种T.koningiopsis的处理组和对照差异显著(P0.05),地下鲜重、地下干重以及全株干重与对照差异显著(P0.05)。接种 T.koningiopsis 的处理全株鲜重显著高于对不同小写字母表示不同处理间差异显著(P0.05)。Different lowercase letters indicate significant differences between different treatments(P0.05).图3接种两株蒜头果内生木霉的幼苗株高增量()、叶片增量()、茎粗()和主根长()Fig.3Height increment(),leaf increment(),s
45、tem diameter()and main root length()of M.oleifera seedlings inoculated with two strains of endophytic Trichoderma不同小写字母表示不同处理间差异显著(P0.05)。Different lowercase letters indicate significant differences between different treatments(P0.05).图4接种两株蒜头果内生木霉的幼苗根部吸器数量及最大吸器直径Fig.4The number of haustoria and the
46、 maximum haustorium diameter in the root of M.oleifera seedlings inoculated with two strains of endophytic Trichoderma 279江 西 农 业 大 学 学 报第 45 卷照(P0.05)。结果表明,接种两株内生木霉均能一定程度促进蒜头果幼苗生物量的提高,其中T.gamsii的促进效果更为显著。2.3.4接种蒜头果内生木霉对其幼苗叶绿素含量的影响接种T.gamsii的蒜头果幼苗叶绿素含量最高,为 3.37 mg/g,其次是接种 T.koningiopsis 的处理,二者分别较对照高
47、出 21.66%和 7.58%(图 5),且均与对照差异显著(P0.05)。由此表明,接种两种蒜头内生木霉均能促进幼苗叶绿素含量的升高。2.3.5接种蒜头果内生木霉对其幼苗抗性相关指标的影响如图 6 所示,接种 T.gamsii的幼苗 POD 和 SOD 活性最高,分别较对照高出40.85%和28.19%,其中POD活性与接种T.koningiopsis的处理和对照差异显著(P0.05),SOD活性与对照差异显著(P0.05)。接种T.koningiopsis的处理,其POD活性较对照高出26.03%且与对照差异显著(P0.05)。由此表明,接种两种内生木霉能一定程度提高蒜头果幼苗的抗性水平。
48、表3接种两株蒜头果内生木霉对蒜头果幼苗生物量的影响Tab.3Effect of inoculating two strains of endophytic Trichoderma on the biomass of M.oleifera eedlings处理TreatmentT.gamsiiT.koningiopsisCK地上鲜重The groundfresh weight12.011.61a8.730.52b7.520.50b地下鲜重Undergroundfresh weight22.941.33a20.601.46ab17.241.58b全株鲜重Whole plantfresh weigh
49、t34.952.68a29.331.78b7.520.50c地上干重The grounddry weight4.800.64a3.490.21b3.010.20b地下干重Undergrounddry weight9.180.53a8.240.58ab6.900.63b全株干重Whole plantdry weight13.981.07a11.730.71ab9.910.81b数据表示为平均值标准误,不同小写字母代表不同基质处理间的差异显著性(P0.05)。Data are expressed as meanstandard error,and different lowercase lette
50、rs represent the significance of differences among different substrate treatments(P0.05).不同小写字母表示不同处理间差异显著(P0.05)。Different lowercase letters indicate significant differences between different treatments(P0.05).图5接种两株蒜头果内生木霉的幼苗叶绿素含量Fig.5The chlorophyll content of M.oleifera seedlings inoculated with