收藏 分销(赏)

低碳钢和铸铁拉伸和压缩试验.doc

上传人:快乐****生活 文档编号:2773465 上传时间:2024-06-05 格式:DOC 页数:5 大小:1,000.51KB
下载 相关 举报
低碳钢和铸铁拉伸和压缩试验.doc_第1页
第1页 / 共5页
低碳钢和铸铁拉伸和压缩试验.doc_第2页
第2页 / 共5页
低碳钢和铸铁拉伸和压缩试验.doc_第3页
第3页 / 共5页
低碳钢和铸铁拉伸和压缩试验.doc_第4页
第4页 / 共5页
低碳钢和铸铁拉伸和压缩试验.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、低碳钢和铸铁拉伸压缩实验报告摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。它是由试验来测定的。工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理 一拉伸实验1.低碳钢拉伸实验拉伸实验试件 低碳钢拉伸图在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:低碳钢拉伸应力-应变曲线(1)弹性阶段(Ob段)在拉伸的初始阶段,-曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点则称为材料的比例极限(p),线性段的直线斜率即为材

2、料的弹性摸量E。线性阶段后,-曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(e),一般对于钢等许多材料,其弹性极限与比例极限非常接近。(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极限(s)。当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45斜纹。这是由于试件的45斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑

3、移所造成的,故称为滑移线。(3)强化阶段(ce段)经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d斜线),其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。在硬化阶段应力应变曲线存在一个最高点

4、,该最高点对应的应力称为材料的强度极限(b),强度极限所对应的载荷为试件所能承受的最大载荷Fb。(4)局部变形阶段(ef段)试样拉伸达到强度极限b之前,在标距范围内的变形是均匀的。当应力增大至强度极限b之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲线呈现下降趋势,直至最后在f点断裂。试样的断裂位置处于颈缩处,断口形状呈杯状,这说明引起试样破坏的原因不仅有拉应力还有切应力。(5)伸长率和断面收缩率试样拉断后,由于保留了塑性变形,标距由原来的L变为L1。用百分比表示的比值 =(L1-L)/L*100%称为伸长率。试样的塑性变形越大,也越大。因此,

5、伸长率是衡量材料塑性的指标。原始横截面面积为A的试样,拉断后缩颈处的最小横截面面积变为A1,用百分比表示的 比值 =(A-A1)/A*100%称为断面收缩率。也是衡量材料塑性的指标。 所以,低碳钢拉伸破坏变形很大,断口缩颈后,端口有45度茬口,由于该方向上存在最大剪应力造成的,属于剪切破坏力。2.铸铁拉伸实验铸铁是含碳量大于2.11%并含有较多硅,锰,硫,磷等元素的多元铁基合金。铸铁具有许多优良的性能及生产简便,成本低廉等优点,因而是应用最广泛的材料之一。铸铁在拉伸时的力学性能明显不同于低碳钢,铸铁从开始受力直至断裂,变形始终很小,既不存在屈服阶段,也无颈缩现象。断口垂直于试样轴线,这说明引起

6、试样破坏的原因是最大拉应力。 断口移中图 铸铁拉伸应力-应变曲线铸铁拉伸破坏断口与正应力方向垂直说明由拉应力拉断的,属于拉伸破坏,正应力大于了许用值。铸铁拉伸二压缩实验1低碳钢压缩实验低碳钢试样压缩时同样存在弹性极限、比例极限、屈服极限而且数值和拉伸所得的相应数值差不多,但是在屈服时却不象拉伸那样明显,需细心观察,材料在发生屈服时对应的载荷为屈服负荷FS。随着缓慢均匀加载,低碳钢受压变形增大而不破裂,愈压愈扁。横截面增大时,其实际应力不随外载荷增加而增加,故不可能得到抗压负荷Fb,因此也得不到强度极限b,所以在实验中是以变形来控制加载的。低碳钢的压缩图(即-曲线),超过屈服之后,低碳钢试样由原

7、来的圆柱形逐渐被压成鼓形。继续不断加压,试样将愈压愈扁,横截面面积不断增大,试样抗压能力也不断增大,故总不被破坏。所以,低碳钢不具有抗压强度极限(也可将它的抗压强度极限理解为无限大),低碳钢的压缩曲线也可证实这一点。灰铸铁在拉伸时是属于塑性很差的一种脆性材料,但在受压时,试件在达到最大载荷Pb前将会产生较大的塑性变形,最后被压成鼓形而断裂。低碳钢压缩曲线图2-9低碳钢压缩破坏图 图2-10铸铁压缩破坏图弹性模量、比例极限和屈服极限与拉伸时基本相同。屈服阶段后,试样越压越扁,所以没有压缩,呈腰鼓形塑性变形,由此可见,韧性材料的抗剪切强度小于抗拉伸强度。2.铸铁压缩实验灰铸铁试样的断裂有两特点:一

8、是断口为斜断口,如图210所示。二是按Pb/A0求得的b远比拉伸时为高,大致是拉伸的34倍。为什么象铸铁这种脆性材料的抗拉与抗压能力相差这么大呢?这主要与材料本身情况(内因)和受力状态(外因)有关。铸铁试件压缩时,在达到抗压负荷Fb前出现较明显的变形然后破裂,铸铁试件最后会略呈鼓形,断口的方位角约为5560,断裂面与试件轴线大约呈45o。铸铁压缩后沿斜截面断裂,其主要原因是由剪应力引起的。假使测量铸铁受压试样斜断口倾角,则可发现它略大于45o而不是最大剪应力所在截面,这是因为试样两端存在摩擦力造成的。铸铁压缩曲线铸铁压缩实验,应力和应变之间无明显的直线阶段和屈服阶段,但是有塑性变形,断口约为螺旋45度方向,抗压时的强度极限约为强度极限的4到5倍。弹性模量通常以某一应力的割线来度量。所以铸铁压缩时主要是剪切破坏,受到最大剪切力,由此可见脆性材料的抗剪切强度大于抗拉伸强度。参考文献:1刘鸿文 材料力学(第五版) 高等教育出版社 2汤安民,刘泽明 灰铸铁拉伸与扭转破坏试验的强度条件分析A 西安理工大学学报3侯德门 材料力学实验 西安交通大学出版社4曹睿 铸铁断裂机理原位拉伸研究 A甘肃工业大学学报5

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服