1、新课标人教版初中数学整数指数幂(2)精品教案教学目标:1、 能较熟练地运用零指数幂与负整指数幂的性质进行有关计算。2、 会利用10的负整数次幂,用科学记数法表示一些绝对值较小的数。重点难点:重点:幂的性质(指数为全体整数)并会用于计算以及用科学记数法表示一些绝对值较小的数难点:理解和应用整数指数幂的性质。教学过程:一、指数的范围扩大到了全体整数.1、探索现在,我们已经引进了零指数幂和负整数幂,指数的范围已经扩大到了全体整数.那么, 以前所学的幂的性质是否还成立呢?与同学们讨论并交流一下,判断下列式子是否成立.(1); (2)(ab)-3=a-3b-3; (3)(a-3)2=a(-3)22、概括
2、:指数的范围已经扩大到了全体整数后,幂的运算法则仍然成立。3、例1 计算(2mn2)-3(mn-2)-5并且把结果化为只含有正整数指数幂的形式。解:原式= 2-3m-3n-6m-5n10 = m-8n4 = 4 练习:计算下列各式,并且把结果化为只含有正整数指数幂的形式:(1)(a-3)2(ab2)-3; (2)(2mn2)-2(m-2n-1)-3.二、科学记数法1、回忆: 我们曾用科学记数法表示一些绝对值较大的数,即利用10的正整数次幂,把一个绝对值大于10的数表示成a10n的形式,其中n是正整数,1a10.例如,864000可以写成8.64105.2、 类似地,我们可以利用10的负整数次幂
3、,用科学记数法表示一些绝对值较小的数,即将它们表示成a10-n的形式,其中n是正整数,1a10.思考:对于一个小于1的正小数,如果小数点后至第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是多少?如果有m个0呢?3、探索:10-1=0.110-2= 10-3= 10-4= 10-5= 归纳:10-n= 例如,上面例2(2)中的0.000021可以表示成2.110-5.4、例11、纳米是非常小的长度单位,1纳米10-9米,把1纳米的物体放到乒乓球上,就如同把乒乓球放到地球上。1立方毫米的空间可以放多少个1立方纳米的物体? 分析我们知道:1毫米10-3 米 1纳米米.所以,1立方毫米的空间可以放个1立方纳米的物体。2、 练习课本P26 1,2补充练习:用科学记数法填空:(1)1秒是1微秒的1000000倍,则1微秒_秒;(2)1毫克_千克;(3)1微米_米;(4)1纳米_微米;(5)1平方厘米_平方米;(6)1毫升_立方米.本课小结:引进了零指数幂和负整数幂,指数的范围扩大到了全体整数,幂的性质仍然成立。科学记数法不仅可以表示一个绝对值大于10的数,也可以表示一些绝对值较小的数,在应用中,要注意a必须满足,1a10. 其中n是正整数布置作业