1、圆一:【知识梳理】 1.圆的有关概念和性质 (1) 圆的有关概念 圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径 (2)圆的有关性质 圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备: 过圆心;垂直于弦;平分弦;平分弦
2、所对的优弧;平分弦所对的劣弧。 上述五个条件中的任何两个条件都可推出其他三个结论。弧、半圆、优弧、劣弧:弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号“”表示,以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆。优弧:大于半圆的弧叫做优弧劣弧:小于半圆的弧叫做劣弧。(为了区别优弧和劣弧,优弧用三个字母表示。)弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等 推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径等圆:能
3、够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。圆心角:顶点在圆心的角叫做圆心角.弦心距:从圆心到弦的距离叫做弦心距.(3)对圆的定义的理解:圆是一条封闭曲线,不是圆面;圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长) 2.与圆有关的角 (1)圆心角:顶点在圆心的角叫圆心角。圆心角的度数等于它所对的弧的度数 (2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。圆周角的度数等于它所对的弧的度数的一半 (3)圆心角与圆周角的关系: 同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半 (4)圆内接四边形:顶点都在圆上的四
4、边形,叫圆内接四边形 圆内接四边形对角互补,它的一个外角等于它相邻内角的对角3. 点与圆的位置关系及其数量特征: 如果圆的半径为r,点到圆心的距离为d,则 点在圆上 d=r;点在圆内 dr;点在圆外 dr.其中点在圆上的数量特征是重点,它可用来证明若干个点共圆,方法就是证明这几个点与一个定点、的距离相等。4. 确定圆的条件:1. 理解确定一个圆必须的具备两个条件: 圆心和半径,圆心决定圆的位置,半径决定圆的大小. 经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上.2. 经过三点作圆要分两种情况:(1) 经过同一直线上的三点不能作圆.(2)经过不在同一直线上的
5、三点,能且仅能作一个圆.定理: 不在同一直线上的三个点确定一个圆.3. 三角形的外接圆、三角形的外心、圆的内接三角形的概念: (1)三角形的外接圆和圆的内接三角形: 经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形.(2)三角形的外心: 三角形外接圆的圆心叫做这个三角形的外心.(3)三角形的外心的性质:三角形外心到三顶点的距离相等.5. 直线与圆的位置关系1. 直线和圆相交、相切相离的定义:(1)相交: 直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线.(2)相切: 直线和圆有惟一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,惟一的公共点做切点.
6、(3)相离: 直线和圆没有公共点时,叫做直线和圆相离.2. 直线与圆的位置关系的数量特征: 设O的半径为r,圆心O到直线的距离为d;dr 直线L和O相交.d=r 直线L和O相切.dr 直线L和O相离.3. 切线的总判定定理: 经过半径的外端并且垂直于这个条半径的直线是圆的切线.4. 切线的性质定理: 圆的切线垂直于过切点的半径.推论1 经过圆心且垂直于切线的直线必经过切点.推论2 经过切点且垂直于切线的直线必经过圆心.分析性质定理及两个推论的条件和结论间的关系,可得如下结论:如果一条直线具备下列三个条件中的任意两个,就可推出第三个.垂直于切线; 过切点; 过圆心.5. 三角形的内切圆、内心、圆
7、的外切三角形的概念. 和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心, 这个三角形叫做圆的外切三角形.6. 三角形内心的性质: (1)三角形的内心到三边的距离相等.(2)过三角形顶点和内心的射线平分三角形的内角.由此性质引出一条重要的辅助线: 连接内心和三角形的顶点,该线平分三角形的这个内角.6. 圆和圆的位置关系.1. 外离、外切、相交、内切、内含(包括同心圆)这五种位置关系的定义.(1)外离: 两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(2)外切: 两个圆有惟一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时, 叫做
8、这两个圆外切.这个惟一的公共点叫做切点.(3)相交: 两个圆有两个公共点,此时叫做这个两个圆相交.(4)内切: 两个圆有惟一的公共点,并且除了这个公共点以外,一个圆上的都在另一个圆的内部时,叫做这两个圆内切.这个惟一的公共点叫做切点.(5)内含: 两个圆没有公共点, 并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.两圆同心是两圆内的一个特例.2. 两圆位置关系的性质与判定:(1)两圆外离 dR+r(2)两圆外切 d=R+r(3)两圆相交 R-rdR+r (Rr)(4)两圆内切 d=R-r (Rr)(5)两圆内含 dr)3. 相切两圆的性质: 如果两个圆相切,那么切点一定在连心线上.4.
9、 相交两圆的性质:相交两圆的连心线垂直平分公共弦.7. 圆内接四边形若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆.圆内接四边形的特征: 圆内接四边形的对角互补; 圆内接四边形任意一个外角等于它的内错角.8. 弧长及扇形的面积1. 圆周长公式: 圆周长C=2R (R表示圆的半径)2. 弧长公式: 弧长 (R表示圆的半径, n表示弧所对的圆心角的度数)3. 扇形定义:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.4. 弓形定义:由弦及其所对的弧组成的图形叫做弓形. 弓形弧的中点到弦的距离叫做弓形高.5. 圆的面积公式.圆的面积 (R表示圆的半
10、径)6. 扇形的面积公式:扇形的面积 (R表示圆的半径, n表示弧所对的圆心角的度数)弓形的面积公式:(如图5)图5(1)当弓形所含的弧是劣弧时, (2)当弓形所含的弧是优弧时, (3)当弓形所含的弧是半圆时, 二、例题解析【例题1】如图1,是的外接圆,是直径,若,则等于( ) A60 B50 C40 D30 图1 图2 图3【例题2】如图2,以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆半径为10cm,小圆半径为6cm,则弦AB的长为 cm【例题3】如图3,ABC内接于O,AB=BC,ABC=120,AD为O的直径,AD6,那么BD_【例题4】如图4已知O的两条弦AC,BD相
11、交于点E,A=70o,c=50o,那么sinAEB的值为() A. B. C. D. 图4PBCEA(图8)【例题5】如图5,半圆的直径,点C在半圆上,(1)求弦的长;(2)若P为AB的中点,交于点E,求的长 三、课堂练习 1、如图6,在O中,ABC=40,则AOC 度CABS1S2BCAO 图6 图7 图82、如图7,AB是O的直径,AC是弦,若ACO = 32,则COB的度数等于 3、已知O的直径AB=8cm,C为O上的一点,BAC=30,则BC=_cm.4、如图8,已知在中,分别以,为直径作半圆,面积分别记为,则+的值等于 5、如图9,O的半径OA10cm,P为AB上一动点,则点P到圆心
12、O的最短距离为_cm。 图96、如图10,在O中,ACB=BDC=60,AC=,(1)求BAC的度数; (2)求O的周长7、已知:如图11,O的直径AB与弦CD相交于,弧BC弧BD,O的切线BF与弦AD的延长线相交于点F(1)求证:CDBF(2)连结BC,若O的半径为4,cosBCD=,求线段AD、CD的长 8、如图12,在ABC中,AB=BC,以AB为直径的O与AC交于点D,过D作DFBC,交AB的延长线于E,垂足为F(1)求证:直线DE是O的切线;(2)当AB=5,AC=8时,求cosE的值 图12 四、经典考题解析 1.如图13,在O中,已知A CBCDB60 ,AC3,则ABC的周长是
13、_. 图13 图14 图152.“圆材埋壁”是我国古代九章算术中的问题:“今有圆材,埋在壁冲,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何”用数学语言可表述为如图14,CD为O的直径,弦ABCD于点E,CE1寸,AB=10寸,则直径CD的长为( ) A125寸 B13寸 C25寸 D26寸3.如图15,已知AB是半圆O的直径,弦AD和BC相交于点P,那么等于( ) AsinBPD BcosBPD CtanBPD DcotBPD4.O的半径是5,AB、CD为O的两条弦,且ABCD,AB=6,CD=8,求 AB与CD之间的距离5.如图16,在M中,弧AB所对的圆心角为1200,已知圆的半径为2
14、cm,并建立如图所示的直角坐标系,点C是y轴与弧AB的交点。(1)求圆心M的坐标;(2)若点D是弦AB所对优弧上一动点,求四边形ACBD的最大面积 图16 五、课后训练 1.如图17,在O中,弦AB=1.8cm,圆周角ACB=30 ,则 O的直径等于_cm 图17 图18 图192.如图18,C是O上一点,O是圆心若C=35,则AOB的度数为( ) A35 B70 C105 D150 3.如图19,O内接四边形ABCD中,AB=CD,则图中和1相等的角有_ 4.在半径为1的圆中,弦AB、AC分别是和,则 BAC的度数为多少?5.如图20,弦AB的长等于O的半径,点C在O上,则C的度数是_. 图
15、20 图21 图22 6.如图21,四边形 ABCD内接于O,若BOD=100,则DAB的度数为( ) A50 B80 C100 D1307.如图22,四边形ABCD为O的内接四边形,点E在CD的延长线上,如果BOD=120,那么BCE等于( ) A30 B60 C90 D1208.如图,O的直径AB=10,DEAB于点H,AH=2 (1)求DE的长; (2)延长ED到P,过P作O的切线,切点为C,若PC=22,求PD的长九年级数学圆练习题一、 填空题:(21分)1、 如图,在O中,弦ABOC,则=_2、如图,在O中,AB是直径,则=_3、如图,点O是的外心,已知,则=_BCOA(1题图) (
16、2题图) (3题图) (4题图)4、如图,AB是O的直径,弧BC=弧BD,则 (5题图) (6题图) (7题图) 5、如图,O的直径为8,弦CD垂直平分半径OA,则弦CD 6、已知O的半径为2cm,弦AB2cm,P点为弦AB上一动点,则线段OP的范围是 7、如图,在O中,B=50,C=20,则BOC的=_二、解答题(70分)BD1、如图,AB是O的直径.若ODAC,与 的大小有什么关系?为什么?2、已知:如图,在O中,弦AB=CD.求证:弧AC=弧BD;AOC=BOD3、如图,已知:O中,AB、CB为弦,OC交AB于D,求证:(1)ODBOBD,(2)ODBOBC;4、已知如图,AB、AC为弦
17、,OMAB于M,ONAC于N,MN是ABC的中位线吗?5、已知如图,AB、CD是O的直径,DF、BE是弦,且DF=BE,求证:D=B6、已知如图,AB是O的直径,C是O上的一点,CDAB于D,CE平分DCO,交O于E,求证:弧AE=弧EB 7、如图,已知ABC,AC=3,BC=4,C=90,以点C为圆心作C,半径为r.(1)当r取什么值时,点A、B在C外.(2)当r在什么范围时,点A在C内,点B在C外.(2)当r在什么范围时,C与线段AB相切。三、计算下列各题:(40分) 1、如图,已知AB为O的直径,AC为弦,ODBC交AC于D,OD =,求BC的长;ABCDE2、如图,在RtABC中,C9
18、0,AC3,BC4,以点C为圆心,CA为半径的圆与AB、BC分别交于点D、E,求AB、AD的长3、如图,O的直径AB和弦CD相交于点E,且AE=1cm,EB=5cm,DEB=60,求CD的长。4、如图,在直径为100 mm的半圆铁片上切去一块高为20 mm的弓形铁片,求弓形的弦AB的长. 5、如图所示,已知矩形ABCD的边。(1)以点A为圆心,4cm为半径作A,则点B、C、D与A的位置关系如何?(2)若以点A为圆心作A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则A的半径r的取值范围是什么? 四、作图题:(9分)如图是一块圆形砂轮破碎后的部分残片,试找出它的圆心, 并将它还原成一个圆要求:、尺规作图;、保留作图痕迹(可不写作法)ACDB 五、探究拓展与应用(10分)1、在探讨圆周角与圆心角的大小关系时,小亮首先考虑了一种特殊情况(圆心在圆周角的一边上)如图(1)所示:AOC是ABO的外角AOC=ABO+BAO又OA=OBOAB=OBA AOC=2ABO即ABC=AOC如果ABC的两边都不经过圆心,如图(2)、(3),那么上述结论是否成立?请你说明理由。