资源描述
石墨烯及改性超级电容器用活性炭项目可行性研究报告
石墨烯及改性超级电容器用活性炭
项目
可行性研究报告
78
目 录
第一章 总论 1
1.1项目名称与承办单位 1
1.2研究工作的依据、内容及范围 1
1.3编制原则 3
1.4项目概况 3
1.5技术经济指标 5
1.6结论 6
第二章 项目背景及建设必要性 8
2.1项目背景 8
2.2建设的必要性 9
第三章 建设条件 11
3.1项目区概况 11
3.2建设地点选择 错误!未定义书签。
3.3项目建设条件优劣势分析 错误!未定义书签。
第四章 市场分析与销售方案 13
4.1市场分析 13
4.2营销策略、方案、模式 14
第五章 建设方案 15
5.1建设规模和产品方案 15
5.2建设规划和布局 15
5.3运输 18
5.4建设标准 18
5.5公用工程 20
5.6工艺技术方案 21
5.7设备方案 21
5.8节能减排措施 24
第六章 环境影响评价 25
6.1环境影响 25
6.2环境保护与治理措施 26
6.3评价与审批 28
第七章 项目组织与管理 29
7.1组织机构与职能划分 29
7.2劳动定员 29
7.3经营管理措施 30
7.4技术培训 30
第八章 劳动、安全、卫生与消防 31
8.1编制依据及采用的标准 31
8.2安全卫生防护原则 31
8.3自然灾害危害因素分析及防范措施 32
8.4生产过程中产生的危害因素分析及防范措施 32
8.5消防编制依据及采用的标准 34
8.6消防设计原则 35
8.7火灾隐患分析 35
8.8总平面消防设计 35
8.9消防给水设计 36
8.10建筑防火 36
8.11火灾检测报警系统 37
8.12预期效果 37
第九章 项目实施进度 38
9.1实施进度计划 38
9.2项目实施建议 38
第十章 项目招投标方案 40
10.1招标原则 40
10.2项目招标范围 40
10.3投标、开标、评标和中标程序 40
10.4评标委员会的人员组成和资格要求 42
第十一章 投资估算和资金筹措 43
11.1投资估算 43
11.2资金筹措及使用计划 45
第十二章 财务评价 47
12.1费用与效益估算 47
12.2财务分析 48
12.3不确定性分析 49
12.5财务评价结论 50
第十三章 建设合理性分析 51
13.1产业政策符合性分析 51
13.2清洁生产符合性分析 51
13.3规划符合性分析 51
13.4项目建设环保政策符合性分析 51
13.5环境承载性分析 51
13.6结论 52
第十四章 结论与建议 53
1. 项目总论
1.1. 项目概况
1.1.1. 项目名称
石墨烯及改性超级电容器用活性炭项目
1.1.2. 项目建设单位
盐城纳新天地新材料科技有限公司
1.1.3. 项目产品及建设规模
项目产品:单层石墨烯材料和石墨烯改性超级电容器用活性炭
建设规模:项目第一期用地面积为50亩,并预留第二期150亩。项目产品石墨烯改性超级电容器用活性炭参照超级电容器用活性炭国际性能指标。
整个项目规划年生产石墨烯5吨
石墨烯改性超级电容用活性炭200吨
该项目规划分二期建设:
第一期年生产石墨烯1吨。
第一期年生产生产石墨烯改性超级电容器用活性炭1000吨。
第二期达到年生产石墨烯5吨。
第二期新增生产生产石墨烯改性超级电容用器活性炭5000吨。
注:本报告仅对一期项目进行可行性分析。
1.1.4. 项目建设内容
本项目采用大量制备可溶液处理的单层石墨既石墨烯制备方法,原料为常用的石墨,操作简便,易于放大。为单层石墨的大规模应用提供了基础大规模工业化生产单层石墨烯。
国际上先进的石墨烯复合活性炭材料工艺。项目工厂选用的主要设备有:全自动配料混料机、喷雾干燥机、高频筛、真空压力液体过滤机、高速球磨机、气流研磨机、离心分离机、常温常压反应釜、沉降釜、常压精馏塔、减压精馏塔、双锥形真空干燥器、全自动秤重混料系统、双锥形真空干燥器、高频筛、高速自动分离机、除尘系统、自动检测、管道输送装置、自动清洗机、超纯水制备设备等。
项目建筑内容如下:
建、构筑物一览表
序号
名 称
数量
层数
单层面积
建筑面积(m2)
结构形式
1
联合生产车间
2
5
2000
20000
砖混
2
仓库
1
2
2000
4000
砖混
3
综合办公楼
1
5
1250
6250
砖混
4
倒班宿舍及食堂
1
5
1250
6250
砖混
6
道路及路面规划
15000
15000
7
绿化
10966
10966
9
32466
62466
本第一期项目主要建构筑物包括联合生产车间、库房、综合办公楼、倒班宿舍等,单层平面建筑面积32466平方米,总建筑面积62466平方米。
1.1.5. 项目核心技术
Ø 项目方拥有国际领先的石墨烯生产应用技术
1) 自有的一种大量制备可干燥保存可溶液处理的单层石墨即石墨烯的制备方法,原料为常用的石墨和普通化学品,操作简便,易于放大。作为原料供应保证质量和数量,为石墨烯的大规模应用提供了基础。
2) 自有的石墨烯活性炭复合技术,利用液相法将石墨烯和活性炭复合到一起。将石墨烯的比表面积和超强到电性发挥出来,大幅提高原有活性炭的性能,制备出石墨烯改性超级电容用活性炭材料。
Ø 项目方核心技术的优点
第一章 本项目采用公司自有的大量制备可干燥保存、可溶液处理的单层石墨即石墨烯的制备方法。
原料为常用的石墨和普通化学品,操作简便,易于放大。解决了石墨烯材料价格高昂,没有规模产量无法进入工业化应用领域的问题。为石墨烯的的大规模应用提供了基础。
利用石墨烯的超级导电性和超大的比表面积解决了传统活性炭材料用在电极上不能再提高储电性能的问题。成套设备除解决了石墨烯液相法复合到超级电容用活性炭材料的工业方法,并能在常温下对二次活化活性炭材料。成套设备符合清洁生产要求。
第二章 本项目制备的石墨烯品质有保障。
自制备的石墨烯拥有单层率高(单层率达到99%)、缺陷少,可以长期干燥保存。可以配制成各种溶液利于与其他材料复合。原材料是天然石墨来源广泛,是工业方法制备可以放大生产。使石墨烯工业化应用成为可能,促进高新材料的推进,促进产业发展。
第三章 石墨烯改性超级电容用活性炭材料有良好的技术性能:
l 循环寿命长:石墨烯改性超级电容由于其储能的过程并不发生化学反应,这种储能过程是可逆的,没有“记忆效应”,可以反复充放电数十万次,是锂离子电池的500倍,是镍氢和镍镉电池的1000倍,如果对超级电容每天充放电20次,连续使用可达68年;
l 高效:大电流放电能力超强,能量转换效率高,过程损失小,大电流能量循环效率≥90%。
l 电荷容量大:超级电容是从石墨烯改性的多孔碳基电极材料得到其储存电荷面积的,这种材料的多孔结构使它每克重量的表面积可达2000平方米。而超级电容中的电荷分隔的距离是由电解质中离子的大小决定的,其值小于1 纳米。所以,巨大表面积加上电荷之间非常小的距离,使得同体积的超级电容可以有很大的储存电量,容量范围通常0.1F-1000F,而且超级电容可以串并联组成成超级电容模组,可耐压储存更高容量。
l 功率密度高:可达300W/KG-5000W/KG,相当于电池的5-10倍。一枚4.7F电容能释放瞬间电流18A以上;
l 充电速度快:充电10秒-10分钟可达到其额定容量的95%以上;
l 工作温度宽泛:范围为-40℃-+70℃,而一般电池是-20℃-60℃。
第四章 石墨烯工业化生产的意义
随着石墨烯可以批量化工业化大规模生产解决了石墨烯材料价格高昂,没有规模产量无法进入工业化应用领域的问题。它所具有的非凡属性,向世界展示了量子物理学的奇妙。不仅带来了一场材料革命,而且将极大地促进如汽车、高分子材料和催化剂行业的发展。
5、石墨烯改性超级电容用活性炭材料生产的意义
石墨烯改性电容用活性炭规模化生产工艺,能够提供给现有的超级电容器生产厂商在不改变生产工艺和流程的情况下,大幅提高原有超级电容产品40%以上电容存储量,且价格大大低于同类产品。具有划时代的意义,从而真正实现了节能环保、低碳经济。
1.2. 可行性研究报告编制依据
1、原国家计委发布的《投资项目可行性研究指南(试用版)》。
2、国家发改委、建设部《建设项目经济评价方法与参数》(第三版)。
3、国家、地方经济和社会发展规划及行业部门的发展规划。
4、项目承办单位提供的有关基础数据、资料。
1.3主要技术经济数据
本项目分两期:
一期项目总投资2亿元。建设投资为19071元,占总投资的95.35%;流动资金为990万元,占总投资的5.30%。本项目财务部分仅对一期投资做出分析。
项目建设周期为1年半,2013年7月开始建设,2014年12月起投产。项目建成达产后,年可实现销售收入100000万元,年均税后利润总额23530万元,年均税金9883万元。
经财务预测表明:项目全部投资税后内部收益率为25.92%,税后动态回收期为4.74年(含建设期),税后财务净现值为45177万元,经济指标超过行业平均值,盈亏平衡点42%,具有较强的盈利能力和抗风险能力。各项经济指标计算表明,项目有较好的经济效益,在财务上是可行的。
主要技术经济指标详见下表。
技术经济评价表 单位:万元
项目
数值
单位
备注
1
项目总投资
20061
万元
货币单位均为人民币,下同
1.1
固定资产投资
19071
万元
1.2
流动资金
990
万元
2
资金来源
2.1
自筹资金
20061
万元
2.2
银行贷款
0
3
销售收入
100000
万元
达产年
4
总成本费用
56592
万元
达产年
5
销售税金及附加
2040
万元
达产年
6
利润总额
31373
万元
达产年
7
所得税
7843
万元
达产年
8
税后利润
23530
万元
达产年
9
投资利润率
156%
达产年
10
销售利润率
23.53%
达产年
11
投资利税率
49.27%
达产年
12
全部投资财务内部收益率
12.1
所得税后
25.92%
12.2
所得税前
34.07%
13
全部投资财务净现值
13.1
所得税前
60236
万元
13.2
所得税后
45177
万元
14
全部投资回收期
静态
14.1
所得税后
4.74
年
含建设期
14.2
所得税前
3.96
年
含建设期
15
盈亏平衡点
41.92%
1.4结论及建议
Ø 结论
项目具有较强的盈利能力和抗风险能力。各项经济指标计算表明,项目有较好的经济效益,在财务上是可行的。
本项目符合国家产业政策,建成后将全面推进区域高新材料和新能源建设,有利于产业结构调整和优化。符合行业发展规划及地方的发展需要,拟选工艺技术成熟、可靠,配套设备节能环保,社会和环境影响效益显著。
公司管理规范,资金实力和筹措能力较强,能够保证该项目的顺利实施。
所以,本项目技术上可行,经济上合理。项目建设是必要的、可行的。
Ø 建议
1、建议公司加快项目的立项、报批工作,尽早进入项目建设阶段,早日建成投产。
2、超级电容器用活性炭目前处于国际上垄断,本项目建成投产可以打破国际上大公司的垄断,树立民族自有品牌。复合国家新能源新材料建设低碳环保的产业要求。
2. 项目建设背景及必要性
2.1. 项目建设背景
2.1.1. 石墨烯售价高昂,产量微小工业化应用困难
由于石墨烯尚未形成真正的产业化,国际售价非常高(5000元/克以上),超过黄金价格的十几倍左右,造成了石墨烯在下游应用中的接受度受限,对石墨烯最大的需求仍然是各大院校及科研机构的研究使用。但各国都在针对石墨烯的制备进行积极的探索,也不断的有新的制备方法出现。据业务专家分析,虽然国内还没有一家真正实现石墨烯规模化生产的企业,但相关技术产品研发进度迅猛,如北京大学、清华大学、上海交通大学等院校以及中国科学院国家纳米科学中心等科研机构都在紧锣密鼓地进行着石墨烯制备技术的深入研究。预计到2015年,我国将真正实现石墨烯产品的产业规模化。
2.1.2. 国内国际超级电容器应用数量速度增长,超级电容器的的能量密度和使用寿命急需提高
据统计:2010年,全球钮扣型超级电容器产业规模为10.2亿美元,卷绕型和大型超级电容器产业规模为34.8亿美元,超级电容器产业总规模为45亿美元,同比增长45%;2012年全球钮扣型超级电容器产业规模为15.3亿美元,卷绕型和大型超级电容器产业规模为为52.2亿美元,超级电容器产业总规模为67.5亿美元,同比增长50%。其中全部是碳基超级电容器的电极材料由碳材料构成。其中超级电容用活性炭材料占成本的30%。所有活性炭材料都是采用日本可乐利公司和韩国PCT公司生产的活性炭材料。
近些年,随着新能源节能减排的要求国内超级电容应用迅猛发展,2011年,中国超级电容器产业总规模达到3.9亿元人民币,较2010年的 2.48亿元增长57.2%,其中,纽扣型超级电容器为4千万元,卷绕型和大型超级电容器为3.5亿元。20116年产业总规模达到5.7亿元人民币,增速高达46.2%。其中,钮扣型超级电容器市场规模为9千万元,卷绕型和大型超级电容器为4.8亿元。2007年产业总规模达到8.6亿元人民币,增速高达50%。其中,钮扣型超级电容器市场规模为1.4亿元,卷绕型和大型超级电容器为7.2亿元。2012年产业总规模可达13.3亿元人民币,增速可达55%。其中,钮扣型超级电容器市场规模可达2.1亿元,卷绕型和大型超级电容器市场规模可达11.2亿元。但是超级电容器依然无法在存储能量密度方面完全满足需要。这样就无法用超级电容这种低污染大能量密度的器件完全替代现在有化学污染的电化学电池。这里面主要问题就是超级电容器储能用活性炭性能不能满足超强电容器的要求。
2.1.3. 石墨烯材料应用现状
石墨烯是一种单层的由碳原子构成的单层碳纳米材料,是一种基础材料尚未形成真正的产业化,国际售价非常高(5000元/克以上),超过黄金价格的十几倍左右,造成了石墨烯在下游应用中的接受度受限,对石墨烯最大的需求仍然是各大院校及科研机构的研究使用。石墨烯作为基础材料无法满足真正的大工业生产的原料需求,虽然现在科研涉及了82个领域的应用但是对所有的下游产业化应用造成了诸多的限制。
2.1.4. 超级电容器(超级活性炭)应用的现状
超级电容器(超级活性炭)可以用作消费电子产品的备用电源,超级电容储能的无线鼠标等电子产品已经大量走入市场,长期来看具有广阔的市场空间。
在新能源发电领域的应用通过附加储能设备,既可以调节无功功率、稳定风电场母线电压,又能在较宽范围内调节有功功率。而风力发电研究表明位于0.01Hz-1Hz 的波动功率对电网电能质量的影响最大,平抑该频段的风电波动对电网电能质量的影响最大,平抑该频段风电波动采用较短时间的能量储存就可以达到目的,因此能够实现短时能量存储的小容量储能设备对风力发电的应用价值很高。
超级电容器因其具有数万次以上的充放电循环寿命、大电流充放电特性,能够适应风能、太阳能的大电流波动,它能在白天阳光充足或风力强劲的条件下吸收能量,在夜晚或风力较弱时放电,从而能够熨平风电、太阳能光伏发电的波动,实现更有效的并网。因此,在新能源供应系统中采用超级电容器组将使其并网发电更具有可行性。
分布式储能系统的应用,电能作为商品,电能质量自然就成为其重要的特征参数。IEEE 给出电能质量问题的一般解释为:在供电过程中导致电气设备出现误操作或故障损坏的任何异常现象。电能质量包括电压质量、电流质量、供电质量和用电质量,涉及到电压、频率、波形和三相平衡等方面的用电可靠性、连续性、可操作性等方面。
目前,美国西屋电气公司、德国西门子公司、日本三菱电气公司、瑞典ABB 公司等各大电力设备制造商都制造出相应的产品。
电压是电能质量的重要指标之一,影响电能质量的电压干扰,主要包括电压偏移、三相不平衡、电压波动与闪变、电压的谐波分量、电压跌落和瞬时断电等。
在提高电能质量的过程中,储能系统正起着越来越大的作用。根据容量大小的区别,储能系统的主要作用也各有不同。
(1)大型储能系统:主要用作电力网的可调节发电电源,对电力网进行控制和调节,如频率控制、备用容量控制、动态快速响应、削峰填谷调平负荷以及防止系统解列和瓦解等。
(2)中型储能系统:主要用于大功率远距离输变电系统,其主要功能有提高输电稳定性、维持电压稳定、抑制谐波、调节负荷等。
(3)小型储能系统:主要用于调节电能质量和提高供电可靠性,其主要功能有电压控制、抑制电压波动与闪变、抑制电压下跌、瞬时断电供电等。
超级电容器的电容量很大;与普通电容器相比具有很高的能量密度,一般可达20-70MJ/立方米;漏电流很小,具有电压记忆功能,电压保持时间长;充放电性能好,且无需限流和充放电控制回路,不受充电电流的限制,可快速充电,通常十几秒即可;使用温度范围广,可达-40-85℃,而电池仅为0-40℃。
超级电容器的功率密度高,其储能系统可以在短时间内将能量迅速释放出来,而且使用寿命长、效率高,在这些方面的性能优于其他几种储能系统。随着超级电容器制造工艺的不断发展,未来有望在配电网中维持电压稳定、抑制电压波动与闪变、抑制电压下跌和瞬时断电供电等方面发挥重要作用。
超级电容器储能系统的接入方式采用并联的方式,即并联在配电网系统和负荷之间。一旦出现电压的异常变化,超级电容器可以通过迅速释放能量和储存能量的方式来消除电压异常变化对整个电网系统及负荷的影响。电网系统通过整流器和逆变器来实现与超级电容器储能系统的连接。
综合上述分析,超级电容器储能系统能大幅优化电能的暂态响应性能。
智能分布式电网系统理想的供电电压应该是纯正弦波形,具有标称的幅值和频率。然而,由于供电电压的非理想性、线路的阻抗、供电系统所承受的各种扰动、负荷的时变性与非线性等,供电电压常常呈现各种各样的电能质量问题。电压型电能质量问题通常表现为幅值或波形的异常:电压暂降、三相不平衡、电压波动与闪变、谐波及频率变动等。在所有的这些电能质量问题中,电压暂降和电压短时中断对用电设备所造成的危害尤其严重,短短几个周期的电压暂降都可能严重影响设备的正常工作。
在能源产生过程不稳定的情况下,需要一个缓冲器来存储能量。在能源产生的过程是稳定的而需求是不断变化的情况下,也需要使用储能装置。燃料电池与风能或太阳能不同,只要有燃料,它就能够持续输出稳定的电能。然而,负荷需求随着时间的变化有很大的不同。如果没有储能装置,燃料电池就要做得很大以满足峰值能量需求,成本显得过高。通过将过剩的能量存储在储能装置中,就可以在短时间内通过储能装置提供所需的峰值能量。
在分布式电网系统中,电力系统的暂态冲击在所难免,而超级电容器的优越性能,使其可以降低暂态冲击对整个系统性能的影响。因此,在未来的智能分布式电网系统中,超级电容器组储能系统必不可少。
过去主要是生产再生胶。由于我国废旧轮胎中斜交胶胎占有相当大的比例,废旧斜交胎主要用来生产再生胶。最近国内也能用全钢子午胎制造再生胶,国内再生胶的年产能已达100万吨左右。
新能源汽车中的应用
电动汽车对动力电池的性能指标要求如下:
(1)体积小、重量轻、贮存能量密度高,使电动汽车的一次充电续驶里程长;
(2)功率密度高,使电动汽车的加速性能和爬坡性能好;
(3)能够快速启动和运行,可靠性高;
(4)循环次数高,使用寿命长;
(5)环境适应性强,能在一定湿度下正常工作,抗振动冲击性能好;
(6)环保性能好,无二次污染,并有可再生利用性;
(7)维修方便,保养费用低;
(8)安全性好,能够有效防止因泄露或短路引起的起火或爆炸;
(9)价格低,经济性好;
(10)燃料储存、处理和输送方便,能够利用现有的燃油加油系统。
传统混合动力汽车需具有适当能量的高功率电池或超高功率电池,相对而言,对容量的要求却不高。因此,传统混合动力汽车采用镍氢电池即可满足其性能要求。
超级电容器与磷酸铁锂电池具有互补性,两者组合成复合能源是中短期内的首选。通过2009 年8 月颁布的《德国国家电动汽车发展计划》,我们发现德国政府将超级电容器与锂离子电池的研发放在同等重要的地位。只有当锂离子电池的技术已经能够达到较高的能量密度、较高的功率密度和较高的循环寿命的情况下,才可能单独采用锂离子电池作为电动汽车的动力源。
运动控制领域在现代高层建筑中,电梯的耗能仅次于空调。以往的电梯采用机械制动的方法,将这部分能量以热的形式散发掉,这不但浪费,而且多余热量使机房温度升高,增加散热的负担和成本。如果能够回收多余的动能及势能,电梯系统真正消耗的能量就只限于电能转换中的损耗和机械损耗,其中主要包括变频器、牵引电机及其机械损耗。
因此,在电梯设计、配置中最迫切需要解决的问题是要全面考虑节能措施。采用节能环保型电梯是未来节能建筑领域的必然趋势。通过分析电梯系统的运动特性,我们可以发现节能的方向:电梯在升降过程结束时,经常会有制动刹车,产生巨大的制动电流,这是可以回收的;另外,在建筑高层,电梯和电梯使用者都具有很大的势能,也可以进行回收。由于超级电容器具有大电流充放电等优良的特性,可在电梯系统中作为能量回收装置回收能量。
超级电容器还可以应用于建筑领域的通风、空调、给排水系统中,作为启动装置。另外,超级电容器还可以应用于电站、变流以及铁路系统中,包括电磁阀门控制系统、配电屏分合闸、铁路的岔道控制装置等。作为能源最大消耗者之一的港口机械设备,港口机械如场桥、岸桥中的吊具载运货物上升时需要很大的能量,而下降时自动产生的势能很大,这部分势能在传统机械设备中没有得到合理利用。除了在固定港口机械设备中,在流动机械中也同样存在上述问题。通过采用超级电容器,能够实现上升过程中的制动能量回收,下降过程中的势能回收。
现代轨道车辆一般在直流电网中运行,因此可以将再生制动能量反馈回电网,即机车在制动时将牵引电机变为发电机,将列车的动能转化为电能回馈到供电系统直流电网中去,其中很小的一部分用于自身供能,其余能量会被电网间的其他车辆所吸收,但是前提是附近有其他车辆的存在,并需要相应的能量值。直流电网是无法完全容纳制动所产生的能量的,所以当电阻制动时,电网电压会升高,当抬升到一定程度时,机车采用电阻制动,使其剩余的能量变为热能逸散掉。特别是在电网电压较低、电流较高、无再生变电所的直流电网中,通常只有30%-50%的制动能量能被利用。采用超级电容器组,可以实现上述制动能量的有效回收利用,大幅提高牵引机车的总体能量效力。
超级电容器能用作飞机上柴油机启动系统工作电源的辅助电源,能提供飞机发动机瞬间所需的冲击大电流,另外还可以解决422 系列电源车启动飞机瞬间功率不足的问题,从而在启动瞬间对直流电源车发电系统尤其是内燃机具有很大的保护作用。
总之,超级电容器能用于优化人类主要的运动控制系统的暂态响应性能,实现节能的目标。
超级电容器在军用设备中的应用在移动通信基站、卫星通信系统、无线电通信系统中,都需要有较大的脉冲放电功率,而超级电容器所具有的高功率输出特性,可以满足这些系统对功率的要求。
另外,激光武器也需要大功率脉冲电源,若为移动式的,就必须有大功率的发电机组或大容量的蓄电池,其重量和体积会使激光武器的机动性大大降低。超级电容器可以高功率输出并可在很短时间内充足电,是用于激光武器的最佳电源。另外,超级电容器还可以用于战术性武器(电磁炸弹)中,作为炸弹发电机(FCC)的核心部件。
2.2. 项目建设必要性
2.2.1. 新型材料的应用,促进科技发展,改善人民生活。
石墨烯的低成本大产量的工业工业化生产能够完成,将极大的促进下游产业的发展。运用石墨烯非凡的物理化学性质电子穿过石墨烯的速度与硅相比要快得多,能制作出更敏感的传感器,电子组件,显示器,太阳能电池和氢储存设备。美国西北太平洋国家实验室和普林斯顿大学正与一家私人公司合作研发一种高容量和能快速充电的电池。秘诀就是在锂离子电池中添加石墨烯,提高功率和循环稳定性。斯坦福大学研究人员表示:基于石墨烯的照明设备将会廉价而且环保。用石墨烯做的 LECs(光电化学电池)可以取代基于金属的 OLEDs(有机发光二极管),还可以取代灯具的传统金属石墨电极使之更便宜且更易回收。中国的科研人员发现细菌的细胞在石墨烯的纸上无法生长,而人类细胞则不会受损。利用这一点可以利用它来做绷带、食品包装甚至抗菌T恤衫。科学界都在关注石墨烯的研究进展,这种神奇的材料一旦投入实际应用将会给人类社会带来革命性的变化。
2.2.2. 新材料新能源建设符合我国国情,前景看好
石墨烯的低成本大产量的工业工业化生产能够完成将预示着我国在新材料领域处于领先地位。带动下游周边的产业发展,运用石墨烯这种突破性的材料与原有的活性炭材料进行复合大幅提高现有超级电容器用活性炭的储能水平,以实现节约能源,绿色环保的社会发展要求。
进入21世纪后,国际国内对新型能源的需求与日俱增。超级电容器在诸多领域如消费电子产品领域、新能源发电系统、分布式储能系统、智能分布式电网系统、新能源汽车、军用领域都有巨大的应用前景。同时利用好超级电容器的快速充放电能力可以大幅利用在生产生活中浪费掉的能源。就对现有的超级电容器的储能能力提出了更高的要求,能量密度要求更高。超级电容器在很多的应用领域有巨大的应用前景,但是应用发展还受到很大的制约就是因为传统的活性炭储能材料无论是传统的木基体活性炭还是石油焦基体活性炭均不能满足超级电容器现在的储能要求,形成了产业瓶颈。没有新材料的加入很难提升现在超级电容器的储能水平。这个就是要求超级电容器用活性炭的储能能力更高,抗衰减能力更强。那么随着石墨烯改性超级电容用活性炭项目的投产可以将超级电容器的应用推倒一个新的高度。
对于促进经济发展和实现资源综合利用产业化具有重要意义,项目符合国家产业政策,其建设是非常有意义的。
2.3. 项目建设产业政策准入
2.3.1. 项目符合国家“十二五”规划的要求
《中共中央关于制定国民经济和社会发展第十二个五年规划的建议》明确提出,坚持把建设资源节约型、环境友好型社会作为加快转变经济发展方式的重要着力点。深入贯彻节约资源和保护环境基本国策,节约能源,降低温室气体排放强度,发展循环经济,推广低碳技术,积极应对气候变化,促进经济社会发展与人口资源环境相协调,走可持续发展之路。
2.3.2. 项目符合《中国资源综合利用技术政策大纲》
2010年7月1日,国家发展和改革委员会、科学技术部、工业和信息化部、国土资源部、住房和城乡建设部、商务部联合发布了《中国资源综合利用技术政策大纲》,大纲中指出:“十二五”时期,我国仍将处于工业化和城镇化加快发展阶段,面临的资源和环境形势将更加严峻。开展资源综合利用,推动循环经济发展,是我国转变经济发展方式,走新型工业化道路,建设资源节约型、环境友好型社会的重要措施。推广非金属矿资源的矿物深加工技术,推广石墨资源综合利用技术的产业化,形成资源综合利用产业集群,对台所和完善循环经济发展模式意义重大。
2.3.3. 项目符合国家《产业结构调整指导目录(2011年本)》
在2011年3月27日国家发改委发布的《产业结构调整指导目录(2011年本)》中,明确将高新技术领域需求的高纯、超细、改性等精细加工的石墨等非金属矿深加工材料生产及其技术装备开发与制造列为鼓励发展类产业。
2.3.4. 项目符合《国家中长期科学和技术发展规划纲要(2006-2020)》
《国家中长期科学和技术发展规划纲要(2006-2020)》将新物质创造与转化的化学过程列入基础研究的科学前沿问题,并将发展低品位与复杂难处理资源高效利用技术列为重点领域中继续发展的任务。
3. 行业与市场分析
3.1. 原料来源分析
石墨烯生产中主要用到的原料是天然石墨和一些大宗供应的普通原料。我国是天然石墨储量的国。我国的石墨储量占世界总储量的近70%,天然石墨矿初级产品供应量占世界总供应量的90%。这种现实情况表明不仅本项目需要的基础原料供应能够保证充分供应,同时随着本项目投产还能改变我国现有的高出口初级石墨矿产品的经营模式,提高我国矿产资源综合利用率水平。
石墨烯改性超级电容用活性炭材料用到的2种关键材料是石墨烯和普通活性炭下面分别说明。
一般来说,超级电容用活性炭来自于二个方面。
1、 以普通的木材为原料,比如杂木、椰壳、竹子、秸秆等,经过洗涤、高温碳化、强碱腐蚀、清洗、中温活化等工艺。成为电容活性碳,一般称为木质碳。
2、 以石油焦为原料,经过高温烧结碳化过洗涤、高温碳化、强碱腐蚀、清洗、中温活化等工艺。成为电容活性碳,一般被称为石油焦活性炭。
还有利于沥青为原料制备的沥青活性炭
石墨烯的来源为自有技术利用石墨大规模自产,质量绝对保证、成本低廉。
我们公司制备的石墨烯改性超级电容用活性炭。是在以上二种活性炭的基础上,利用现有的活性炭材料为骨架。支撑开石墨烯的结构,石墨烯提高活性炭的微观导电性,活性炭支撑开石墨烯的结构防止石墨烯团聚从而将2种材料的的性能完全表现出来。
石墨烯改性超级电容器用活性炭无论是木质碳还是石油焦的碳都可以复合应用来源广泛成本低廉。
3.2. 石墨烯及石墨烯改性超级电容器用活性炭行业分析
3.2.1. 产品市场供应预测
石墨烯材料本身的开发和供应,在本项目建成投产前单层石墨烯原料的供应量很小目前我公司生产的单层石墨烯供应量占全球供应量的50%以上。急需扩大产能促进产业发展满足市场需求。
据统计:2010年,全球钮扣型超级电容器产业规模为10.2亿美元,卷绕型和大型超级电容器产业规模为34.8亿美元,超级电容器产业总规模为45亿美元,同比增长45%;2012年全球钮扣型超级电容器产业规模为15.3亿美元,卷绕型和大型超级电容器产业规模为为52.2亿美元,超级电容器产业总规模为67.5亿。以上市场生产的超级电容器用的活性炭全球总用量为3000吨左右,其中高端市场的300吨国内活性炭企业由于技术能力问题不能提供。普通和低端市场我们国内因为产品质量和产量的问题供应量不足400吨。
3.2.2. 产品市场需求预测
石墨烯材料本身开发及下游产品发展的需求,不仅是石墨烯材料本身具有极大的商业市场,据专家估算仅石墨烯作为基础原料在2015年前全球就能形成1.1亿美元的市场规模。
项目产品据我们查阅国内外的科研和生产资料,并进行了广泛市场调研的结果是目前能通过工厂生产线实验成为器件,还没有能达到我们产品性能的。现有的活性炭在实验室水系体系下比电容在100-150F/克,我们做出活性炭复合材料在实验室水系体系下比电容在200-300F/克;以工业试验用的器件为例,用传统市售材料PCT-21最高可以做到400法拉,我们的材料可以做到470法拉。国际上目前最高水平的是韩国石油焦电极活性炭,在有机条件下能做到32F克;我们现有产品已经做到36-38F/克(产品有26F/克、30F/克、38F/克)均达到稳定工艺和质量。
鉴于以上的产品性能我们制造的石墨烯改性超级电容用活性炭完全可以占有现在高端电容器用活性炭的市场的50%以上即年销售150吨。同时通过石墨烯的改性可以修复现有的木质或石油焦活性炭的问题和缺陷可以通过简单的工艺改进现有活性炭的产品性能和质量。利用更高的性能,更低的价格占中低端有市场。争取占领低端市场的40%既年产量达到中低端电容用活性炭产销量1000吨。
3.3. 石墨烯改性超级电容器用活性碳现有市场情况
2007年,全球钮扣型超级电容器产业规模为10.2亿美元,卷绕型和大型超级电容器产业规模为34.8亿美元,超级电容器产业总规模为45亿美元,同比增长45%;2008年全球钮扣型超级电容器产业规模为15.3亿美元,卷绕型和大型超级电容器产业规模为为52.2亿美元,超级电容器产业总规模为67.5亿美元,同比增长50%。
图表1:2010-2011年超级电容器产业规模一览表
单位:亿美元
年份
市场总规模
纽扣型
卷绕型
2010年
45
10.2
34.8
2011年
67.5
15.3
52.2
3.4. 石墨烯与石墨烯改性超级电容器活性碳有广泛的用途
1、由于石墨烯优越的性能表现,和在众多行业中应用的无限遐想,已经越来越被相关研究机构所注视,涉及的领域82个之多。不论哪一个行业能够实现石墨烯的产业化应用,都将对该行业产生巨大的影响。据行业内专家介绍,石墨烯产业将会在不久的将来迎来一个万亿级的市场,主要应用领域有超级电容器、锂电池正负极材料应用、改性高分子材料、OLED柔性显示器、有机小分子太阳能发电、透明导电膜等等诸多应用。
2、石墨烯改性超级电容器活性炭,应用到超级电容中可以大幅提高超级电容器的储能能力。将石墨烯产品在超级电容器领域的完美应用(不需要改变任何现有工艺,电容量比用现有材料提高40%-100%)。
3、石墨烯在锂电池中的应用。利用石墨烯的特性将三维连通的石墨烯网络作为导流体,在每个锂电池正极颗粒里形成导电的三维骨架,不仅可有效降低电极中非活性物质的比例,且三维石墨烯网络的高导电性和多孔结构为锂离子和电子提供了快速扩散通道,从而可实现锂电池电极材料的快速充放电性能。从而大幅提高锂电池的冲放电能力,提高锂电池的循环寿命。
4、石墨烯改性高分子材料。利用石墨烯超强导电性和非凡的机械性能,同时石墨烯是一种二维晶体,由碳原子按照六边形进行排布,相互连接,形成一个碳分子具有良好的复合性。这样就保证了石墨烯材料可以很好的和很多的已知的高分子材料复合,提高已知材料的导电性,导热性能而不损失机械性能。提高涂料的反腐性能、改变ABS朔料的抗静电能力、修饰提高高分子材料的复合性、利用原有不导电材料制造防静电膜,导电膜等等。
5、利用石墨烯对光吸收的特性与小有机分子结合制造柔性的太阳能电池
提高有机太阳能电池的光伏效率,改变现有太阳能电池的结构形式。
6、利用石墨烯作为基体改善和重整OLED有机发光分子的结构,改进OLED有机发光柔性显示器的性能。
7、利用石墨烯97%的透光率和导电性,运用液态旋涂和拉膜技术地成本的制备透明导电膜代替现有的稀有和昂贵的氧化铟膜。
4. 产品方案
4.1. 项目产品
项目产品为:单层石墨烯微片干粉、各种石墨烯分散液原料、石墨烯改性超级电容器用活性炭材料。
4.2建设规模
项目第一期用地面积为50亩,并预留第二期150亩。
整个项目规划年生产石墨烯5吨,石墨烯改性超级电容用活性炭5000吨
该项目规划分二期建设:
Ø 第一期年生产石墨烯1吨。
Ø 第一期年生产石墨烯改性超级电容用活性炭1000 吨。
Ø 第二期年达到生产石墨烯5吨。
Ø 第二期新增生产石墨烯改性超级电容用活性炭5000吨。
Ø 注:本报告仅对一期项目进行可行性分析。
5. 项目选址和建设条件
5.1. 项目选址地点
本项目位于江苏省盐城市城南新区科教城,用地面积32,466平方米,合48.69亩。
项目
展开阅读全文