1、个人收集整理 勿做商业用途浙江省2015年初中毕业生学业考试绍兴市试卷数 学 试 题 卷满分150分,考试时间120分钟一、选择题(本题有10小题,每小题4分,共40分)1。 计算的结果是A. 3 B. 2 C. 2 D. 32。 据中国电子商务研究中心监测数据显示,2015年第一季度中国轻纺城市场群的商品成交额达27 800 000 000元,将27 800 000 000用科学计数法表示为A。 2。781010 B。 2。781011 C. 27。81010 D。 0.27810113。 有6个相同的立方体搭成的几何体如图所示,则它的主视图是4。 下面是一位同学做的四道题:;,其中做对的一
2、道题的序号是A. B。 C。 D. 5. 在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是A. B. C. D。 6。 化简的结果是A. B。 C。 D。 7. 如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是PRQ的平分线。此角平分仪的画图原理是:根据仪器结构,可得ABCADC,这样就有QAE=PAE.则说明这两个三角形全等的依据是A. SAS B。 ASA C。 AAS D. SSS8。 如图,四边形ABCD是
3、O的内接四边形,O的半径为2,B=135,则的长A。 B。 C。 D. 9. 如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换。已知抛物线经过两次简单变换后的一条抛物线是,则原抛物线的解析式不可能的是A。 B。 C。 D. 10. 挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走。如图中,按照这一规则,第1次应拿走号棒,第2次应拿走号棒,则第6次应拿走A. 号棒 B。 号棒 C。 号棒 D. 号棒二、填空题(本题有6小题,每小题5分,共30分)11. 因式分解:= 12. 如图,已知点A(0,1),B(0,-1)
4、,以点A为圆心,AB为半径作圆,交轴的正半轴于点C,则BAC等于 度13。 由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,AOB=60,如图2,则此时A,B两点之间的距离是 cm14. 在RtABC中,C=90,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为 15. 在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(,)。如图,若曲线与此正方形的边有交点,则的取值范围是 16。 实验室里,水
5、平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示。若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入 分钟的水量后,甲与乙的水位高度之差是0。5cm三、解答题(本题有8小题,共80分)17.(本题8分)(1)计算:;(2)解不等式:18。(本题8分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中。小敏离家的路程(米)和所经过的时间(分)之间的函数图象如图所示。请根据图象回答下列问题:(1)小敏
6、去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?19.(本题8分)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图。根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?20.(本题8分)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60和30。(1
7、)求BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m)。备用数据:,21.(本题10分)如果抛物线过定点M(1,1),则称次抛物线为定点抛物线。(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式。小敏写出了一个答案:,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线,求该抛物线顶点纵坐标的值最小时的解析式,请你解答。22.(本题12分)某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮。(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的
8、宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少?(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m,这样能在这些草坪建造花坛.如图3,在草坪RPCQ中,已知REPQ于点E,CFPQ于点F,求花坛RECF的面积。23。(本题12分)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角DAG=,其中0180,连结DF,BF,如图。(1)若=0,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题
9、是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由。24.(本题14分)在平面直角坐标系中,O为原点,四边形OABC的顶点A在轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点。(1)若四边形OABC为矩形,如图1,求点B的坐标;若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;(2)若四边形OABC为平行四边形,如图2,且OCAC,过点B1作B1F轴,与对角线AC、边OC分别交于点E、点F。若B1E: B1F=1:3,点B1的横坐标为,求点B1的纵坐标,并直接写出的取值范围.