收藏 分销(赏)

2018二次函数专题——存在性问题(提高部分).doc

上传人:快乐****生活 文档编号:2559732 上传时间:2024-05-31 格式:DOC 页数:11 大小:747.22KB
下载 相关 举报
2018二次函数专题——存在性问题(提高部分).doc_第1页
第1页 / 共11页
2018二次函数专题——存在性问题(提高部分).doc_第2页
第2页 / 共11页
2018二次函数专题——存在性问题(提高部分).doc_第3页
第3页 / 共11页
2018二次函数专题——存在性问题(提高部分).doc_第4页
第4页 / 共11页
2018二次函数专题——存在性问题(提高部分).doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、二次函数专题存在性问题(提高部分) 第 11 页 共 11 页类型一:线段长度1. 河南省2009年T23.(11分)23.(11分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动速度均为每秒1个单位长度,运动时间为t秒.过点P作PEAB交AC于点E过点E作EFAD于点F,交抛物线于点G.当t为何值时,线段EG最长?连接EQ在点P、Q运动的过程中,判断有几个时刻使得CEQ是等

2、腰三角形?请直接写出相应的t值.2. (1)求证:它的图象与x轴必有两个不同的交点; (2)这条抛物线与x轴交于两点A(x1,0),B(x2,0)(x1x2),与y轴交于点C,且AB=4,M过A、B、C三点,求扇形MAC的面积S。 (3)在(2)的条件下,抛物线上是否存在点P,使PBD(PDx轴,垂足为D)被直线BC分成面积比为1:2的两部分?若存在,求出点P的坐标;若不存在,说明理由。3. 已知:m,n是方程x26x+5=0的两个实数根,且mn,抛物线y=x2+bx+c的图像经过点A(m,0),B(0,n),如图所示(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一交点为C,抛

3、物线的顶点为D,试求出点C,D的坐标和BCD的面积;(3)P是线段OC上的一点,过点P作PHx轴,与抛物线交于H点,若直线BC把PCH分成面积之比为2:3的两部分,请求出P点的坐标xCOyABD11类型二:面积问题4. 如图,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)求CAB的铅垂高CD及SCAB ;(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使SPABSCAB,若存在,求出P点的坐标;若不存在,请说明理由.5. 将直角边长为6的等腰RtAOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在

4、x、y轴的正半轴上,一条抛物线经过点A、C及点B(3,0) (1)求该抛物线的解析式; (2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当APE的面积最大时,求点P的坐标; (3)在第一象限内的该抛物线上是否存在点G,使AGC的面积与(2)中APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由6. 如图,在平面直角坐标系中,等腰直角AOB的斜边OB在x轴上,顶点A的坐标为(3,3),AD为斜边上的高抛物线yax 22x与直线yx交于点O、C,点C的横坐标为6点P在x轴的正半轴上,过点P作PEy轴,交射线OA于点E设点P的横坐标为m,以A、B、D、E为

5、顶点的四边形的面积为S(1)求OA所在直线的解析式及a的值(2)当m3时,求S与m的函数关系式图ABCDExPOyQMNR图ABCDExPOy(3)如图,设直线PE交射线OC于点R,交抛物线于点Q以RQ为一边,在RQ的右侧作矩形RQMN,其中RN直接写出矩形RQMN与AOB重叠部分为轴对称图形时m的取值范围类型三:等腰三角形7. 如图,抛物线yax2bxc经过A(1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使MAC为等腰三角形,若存在,求出所有

6、符合条件的点M的坐标;若不存在,请说明理由 备用图8. 如图(1),在平面直角坐标系中,点A的坐标为(1,-2),点B的坐标为(3,-1),二次函数的图象为. (1)平移抛物线,使平移后的抛物线过点A,但不过点B,写出平移后的抛物线的一个解析式(任写一个即可).(2)平移抛物线,使平移后的抛物线过A、B两点,记抛物线为,如图(2),求抛物线的函数解析式及顶点C的坐标.(3)设P为y轴上一点,且,求点P的坐标.(4)请在图(2)上用尺规作图的方式探究抛物线上是否存在点Q,使为等腰三角形. 若存在,请判断点Q共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.yox图(1)yox图(2)l1

7、l2 类型四:直角三角形9. 如图,抛物线y=ax2+bx+c经过点A(-3,0),B(1.0),C(0,-3)(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DEx轴于点E,在y轴上是否存在点M,使得ADM是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由 备用图10. 如图1,抛物线yx 22xk与x轴交于A、B两点,与y轴交于点C(0,3)(图2、图3为解答备用图)(1)k_,点A的坐标为_,点B的坐标为_;(2)设抛物线yx 22xk的顶点为M,求四边形ABMC的面积;(3)在x轴

8、下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;yxBAOC图3yxBAOC图2(4)在抛物线yx 22xk上求点Q,使BCQ是以BC为直角边的直角三角形yxBAOC图111. 如图所示,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,2),连接AC,若tanOAC=2(1)求抛物线对应的二次函数的解析式;(2)在抛物线的对称轴l上是否存在点P,使APC=90?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图所示,连接BC,M是线段BC上(不与B、C重合)的一个动点,过点M作直线ll,交抛物线于点N,连接CN、

9、BN,设点M的横坐标为t当t为何值时,BCN的面积最大?最大面积为多少? 12. 在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示,抛物线y=ax2-ax-2经过点B(1)求抛物线的解析式;(2)在抛物线上是否还存在点P(点B除外),使ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由类型五:相似三角形13. 如图,已知抛物线经过A(2,0),B(3,3)及原点O,顶点为C(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,

10、求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形BOC相似?若存在,求出点P的坐标;若不存在,请说明理由14. 已知:在平面直角坐标系中,抛物线yax 2x3(a0)交x轴于A、B两点,交y轴于点C,且对称轴为直线x2(1)求该抛物线的解析式及顶点D的坐标;(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:探究一:如图1,设PAD的面积为S,令WtS,当0t4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;yxOCBAD图1yxOCBAD图2探究二:如图2,是否存在以P、A、D为顶点

11、的三角形与RtAOC相似?如果存在,求点P的坐标;如果不存在,请说明理由15. 河南省2017年T23.(11分)如图,直线与x轴交于点A(3,0),与y轴交于点B,抛物线经过点A,B(1)求点B的坐标和抛物线的解析式; (2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N点M在线段OA上运动,若以B,P,N为顶点的三角形与APM相似,求点M的坐标;点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”请直接写出使得M,P,N三点成为“共谐点”的m的值16. 河南省2016年T23.(1

12、1分)如图1,直线y=-x+n交x轴于点A,交y轴于点C(0,4)抛物线y=x2+bx+c经过点A,交y轴于点B(0,-2).点P为抛物线上的一个动点,过点P作x轴的垂线PD,过点B作BDPD于点D,连接PB.(1)求抛物线的解析式.(2)当BDP为等腰直角三角形时,求线段PD的长.(3)如图2,将BDP绕点B逆时针旋转,得到BD/P/,且PBP/=OAC,当点P的对应点P/落在坐标轴上时,请直接写出P点的坐标.OyxABC类型六:线段和差与最值 17. 如图,已知抛物线yax 2bxc与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点(1)求此抛物线的解析式;(2)若点D

13、为线段OA的一个三等分点,求直线DC的解析式;(3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长18. 河南省2015年T23.(11分)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含端点),过点P作PFBC于点F. 点D、E的坐标分别为(0,6),(-4,0),连接PD,PE,DE. (1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的

14、差为定值. 进而猜想:对于任意一点P,PD与PF的差为定值. 请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使PDE的周长最小的点P也是一个“好点”. 请直接写出所有“好点”的个数,并求出PDE的周长最小时“好点”的坐标.CBAyOEDx备用图PEOFCDBAxy19. 如图,过抛物线y=x22x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为2(1)求抛物线的对称轴和点B的坐标; (2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;连结BD,求BD的最小值;当点

15、D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式 20. 河南省2011年T23.(11分)如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为8.(1)求该抛物线的解析式; (2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PEAB于点E.设PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.类型七:平行四边形21

16、. 如图,抛物线与x轴交A、B两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2(1)求A、B 两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由22. 已知抛物线()与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.(1)填空:试用含的代数式分别表示点与的坐标,则; (2)如图,将沿轴翻折,若点的对应点恰好落在抛物

17、线上,与轴交于点,连结,求的值和四边形的面积;(3)在抛物线()上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.23. 河南省2013年T23.(11分)如图,抛物线y=-x2+bx+c与直线交于C、D两点,其中点C在y轴上,点D的坐标为. 点P是y轴右侧的抛物线上一动点,过点P作PEx轴于点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)若存在点P,使PCF=45,请直接写出相应的点P的坐标.PEOFCDBAxyOCDBAyx24. 如图,在平面直角坐标系OXY中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A和B,且12a+5c=0。(1)求抛物线的解析式;(2)如果点P由点A沿AB边以2cm/秒的速度向点B移动,同时点Q由点B开始沿BC边以1cm/秒的速度向点C移动,那么:移动开始后第t秒时,设S=PQ2(cm2),试写出S与t之间的函数关系式,并写出t的取值范围;当S取最小值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?若存在,请求出点R的坐标;若不存在,请说明理由。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服