1、2022-2023学年高一上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1已知幂函数的图象过点,则( )A.B.C.D.2若集合,则( )A.B.C.D.3已知角的始边与轴非负半轴重合,终边过点,则()A
2、.1B.-1C.D.4若关于的不等式的解集为,则函数在区间上的最小值为()A.B.C.D.5已知全集,集合则下图中阴影部分所表示的集合为()A.B.C.D.6在半径为cm的圆上,一扇形所对的圆心角为,则此扇形的面积为()A.B.C.D.7在特定条件下,篮球赛中进攻球员投球后,篮球的运行轨迹是开口向下的抛物线的一部分.“盖帽”是一种常见的防守手段,防守队员在篮球上升阶段将球拦截即为“盖帽”,而防守队员在篮球下降阶段将球拦截则属“违规”.对于某次投篮而言,如果忽略其他因素的影响,篮球处于上升阶段的水平距离越长,则被“盖帽”的可能性越大.收集几次篮球比赛的数据之后,某球员投篮可以简化为下述数学模型:
3、如图所示,该球员的投篮出手点为P,篮框中心点为Q,他可以选择让篮球在运行途中经过A,B,C,D四个点中的某一点并命中Q,忽略其他因素的影响,那么被“盖帽”的可能性最大的线路是()A.PAQB.PBQC.PCQD.PDQ8给出下列四个命题:底面是正多边形的棱柱是正棱柱;四棱柱、四棱台、五棱锥都是六面体;所有棱长相等的棱柱一定是直棱柱;直角三角形绕其一条边所在的直线旋转一周形成的几何体是圆锥其中正确的命题个数是()A.0B.1C.2D.39下列函数中,表示同一个函数的是A.与B.与C.与D.与10对于函数的图象,关于直线对称;关于点对称;可看作是把的图象向左平移个单位而得到;可看作是把的图象上所有
4、点的纵坐标不变,横坐标缩短到原来的倍而得到以上叙述正确的个数是A.1个B.2个C.3个D.4个11函数的零点所在的区间是( )A.B.C.D.12 (南昌高三文科数学(模拟一)第9题) 我国古代数学名著九章算术中有如下问题:今有甲乙丙三人持钱,甲语乙丙:各将公等所持钱,半以益我,钱成九十(意思是把你们两个手上的钱各分我一半,我手上就有钱);乙复语甲丙,各将公等所持钱,半以益我,钱成七十;丙复语甲乙:各将公等所持钱,半以益我,钱成五十六,则乙手上有钱A.B.C.D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13已知P为ABC所在平面外一点,且PA,PB,PC两两垂
5、直,则下列命题:PABC;PBAC;PCAB;ABBC,其中正确命题的个数是_14已知一个铜质的实心圆锥的底面半径为6,高为3,现将它熔化后铸成一个铜球(不计损耗),则该铜球的半径是_15已知函数,若对恒成立,则实数的取值范围是_.16一个扇形周长为8,则扇形面积最大时,圆心角的弧度数是_.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17已知圆,直线,点在直线上,过点作圆的切线,切点分别为.()若,求点的坐标;()求证:经过三点圆必过定点,并求出所有定点的坐标.18如图,在ABC中,A(5,2),B(7,4),且AC边的中点M在y轴上,BC的中点
6、N在x轴上(1)求点C的坐标;(2)求ABC的面积19近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入a(单位:万元)满足P=3-6,乙城市收益Q与投入a(单位:万元)满足Q=a+2,设甲城市的投入为x(单位:万元),两个城市的总收益为f(x)(单位:万元).(1)当甲城市投资50万元时,求此时公司的总收益;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?20求解下列问题(1)化简(其中各字母均为正数):;(2)化简并求值:
7、21某市一家庭今年一月份、二月份和三月份煤气用量和支付费用如下表所示:月份用气量(立方米)煤气费(元)144.0022514.0033519.00该市煤气收费的方法是:煤气费基本费超额费保险费若每月用气量不超过最低额度A(A4)立方米时,只付基本费3元和每户每月定额保险费C(0C5)元;若用气量超过A立方米时,超过部分每立方米付B元(1)根据上面的表格求A,B,C的值;(2)记该家庭第四月份用气为x立方米,求应交的煤气费y元22(1)计算:;(2)已知,求证:参考答案一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡
8、上.)1、D【解析】先利用待定系数法求出幂函数的解析式,再求的值【详解】解:设,则,得,所以,所以,故选:D2、C【解析】根据交集直接计算即可.【详解】因为,所以,故选:C3、D【解析】利用三角函数的坐标定义求出,即得解.【详解】由题得.所以.故选:D【点睛】本题主要考查三角函数的坐标定义,意在考查学生对这些知识的理解掌握水平.4、A【解析】由题意可知,关于的二次方程的两根分别为、,求出、的值,然后利用二次函数的基本性质可求得在区间上的最小值.【详解】由题意可知,关于的二次方程的两根分别为、,则,解得,则,故当时,函数取得最小值,即.故选:A.5、C【解析】根据题意,结合Venn图与集合间的基
9、本运算,即可求解.【详解】根据题意,易知图中阴影部分所表示.故选:C.6、B【解析】由题意,代入扇形的面积公式计算即可.【详解】因为扇形的半径为,圆心角为,所以由扇形的面积公式得.故选:B7、B【解析】定性分析即可得到答案【详解】B、D两点,横坐标相同,而D点的纵坐标大于B点的纵坐标,显然,B点上升阶段的水平距离长;A、B两点,纵坐标相同,而A点的横坐标小于B点的横坐标,等经过A点的篮球运行到与B点横坐标相同时,显然在B点上方,故B点上升阶段的水平距离长;同理可知C点路线优于A点路线,综上:PBQ是被“盖帽”的可能性最大的线路.故选:B8、B【解析】利用几何体的结构特征,几何体的定义,逐项判断
10、选项的正误即可【详解】解:底面是正多边形,侧棱与底面垂直的棱柱是正棱柱;所以不正确;四棱柱、四棱台、五棱锥都是六面体;满足多面体的定义,所以正确;所有棱长相等的棱柱一定是直棱柱;不满足直棱柱的定义,所以不正确;直角三角形绕直角边所在的直线旋转一周形成的几何体是圆锥所以不正确;故选:B9、D【解析】对于A,B,C三个选项中函数定义域不同,只有D中定义域和对应法则完全相同的函数,才是同一函数,即可得到所求结论【详解】对于A,的定义域为R,的定义域为,定义域不同,故不为同一函数;对于B,的定义域为,的定义域为,定义域不同,故不为同一函数;对于C,定义域为,的定义域为R,定义域不同,故不为同一函数;对
11、于D,与定义域和对应法则完全相同,故选D.【点睛】本题考查同一函数的判断,注意运用只有定义域和对应法则完全相同的函数,才是同一函数,考查判断和运算能力,属于基础题10、B【解析】由判断;由判断;由的图象向左平移个单位,得到的图象判断;由的图象上所有点的纵坐标不变,横坐标缩短到原来的倍,得到函数的图象判断.【详解】对于函数的图象,令,求得,不是最值,故不正确;令,求得,可得的图象关于点对称,故正确;把的图象向左平移个单位,得到的图象,故不正确;把的图象上所有点的纵坐标不变,横坐标缩短到原来的倍,得到函数的图象,故正确,故选B【点睛】本题通过对多个命题真假的判断,综合考查三角函数的对称性以及三角函
12、数的图象的变换规律,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.11、B【解析】根据函数零点存在性定理判断即可【详解】,故零点所在区间为故选:B12、B【解析】详解】设甲乙丙各有钱,则有解得,选B.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13、3【解析】如图所示,PAPC,PAPB,PCPBP,PA平面PBC.又BC平面PBC,PABC.同理PBAC,PCAB,但AB
13、不一定垂直于BC.故答案为:3.14、3【解析】设铜球的半径为,则,得,故答案为.15、【解析】需要满足两个不等式和对都成立.【详解】和对都成立,令,得在上恒成立,当时,只需即可,解得;当时,只需即可,解得(舍);综上故答案为:16、2【解析】设扇形的半径为,则弧长为,结合面积公式计算面积取得最大值时的取值,再用圆心角公式即可得弧度数【详解】设扇形的半径为,则弧长为,所以当时取得最大值为4,此时,圆心角为(弧度)故答案为:2三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、 (1) 点的坐标为或 (2)见解析, 过的圆必过定点和【解析】(1)设,
14、由题可知,由点点距得到,解得参数值;(2)设的中点为,过三点的圆是以为直径的圆,根据圆的标准方程得到圆 ,根据点P在直线上得到,代入上式可求出,进而得到定点解析:()设,由题可知,即,解得:,故所求点的坐标为或.(2)设的中点为,过三点的圆是以为直径的圆,设,则又圆 又代入(1)式,得:整理得:无论取何值时,该圆都经过的交点或综上所述,过的圆必过定点和点睛:这个题目考查的是直线和圆的位置关系;一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;还有就是在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值18、(1)(5
15、,4) (2)【解析】(1)设点,根据题意写出关于的方程组,得到点坐标;(2)由两点间距离公式求出,再由两点得到直线的方程,利用点到直线的距离公式,求出点到的距离,由三角形面积公式得到答案.【详解】(1)由题意,设点,根据AC边的中点M在y轴上,BC的中点N在x轴上,根据中点公式,可得,解得,所以点的坐标是(2)因为, 得,所以直线的方程为,即,故点到直线的距离,所以的面积【点睛】本题考查中点坐标公式,两点间距离公式,点到直线的距离公式,属于简单题.19、(1)43.5(万元);(2)甲城市投资72万元,乙城市投资48万元.【解析】(1)直接代入收益公式进行计算即可.(2)由收益公式写出f(x
16、)=-x+3+26,令t=,将函数转为关于t的二次函数求最值即可.【详解】(1)当x=50时,此时甲城市投资50万元,乙城市投资70万元,所以公司的总收益为3-6+70+2=43.5(万元).(2)由题知,甲城市投资x万元,乙城市投资(120-x)万元,所以f(x)=3-6+(120-x)+2=-x+3+26,依题意得解得40x80.故f(x)=-x+3+26(40x80).令t=,则t2,4,所以y=-t2+3t+26=-(t-6)2+44.当t=6,即x=72万元时,y的最大值为44万元,所以当甲城市投资72万元,乙城市投资48万元时,总收益最大,且最大收益为44万元.【点睛】本题考查函数
17、模型的应用,考查函数最值的求解,属于基础题.20、(1)(2)【解析】(1)结合指数运算求得正确答案.(2)结合对数运算求得正确答案.【小问1详解】原式【小问2详解】原式21、(1);(2).【解析】解:(1)月份的用气量没有超过最低额度,所以月份的用气量超过了最低额度,所以,解得(2)当时,需付费用为元 当时,需付费用为元 所以应交的煤气费考点:函数解析式的求解点评:解决的关键是根据实际问题,将其转化为数学模型,然后得到解析式,求解运算,属于基础题22、(1)13;(2)证明见解析.【解析】(1)根据指数和对数的运算法则直接计算可得;(2)根据对数函数的单调性分别求出范围和范围可判断.【详解】(1)原式(2)因为在上递减,在上递增,所以,故因为,且在递增,所以,即所以,即【点睛】本题考查对数函数单调性的应用,解题的关键是利用对数函数的单调性求出范围,进而可比较大小.