1、等差数列基础习题精选一选择题(共26小题)1已知等差数列an中,a3=9,a9=3,则公差d的值为()AB1CD12已知数列an的通项公式是an=2n+5,则此数列是()A以7为首项,公差为2的等差数列B以7为首项,公差为5的等差数列C以5为首项,公差为2的等差数列D不是等差数列3在等差数列an中,a1=13,a3=12,若an=2,则n等于()A23B24C25D264等差数列an的前n项和为Sn,已知S3=6,a4=8,则公差d=()A一1B2C3D一25两个数1与5的等差中项是()A1B3C2D6一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A
2、2B3C4D57(2012福建)等差数列an中,a1+a5=10,a4=7,则数列an的公差为()A1B2C3D48数列的首项为3,为等差数列且,若,则=()A0B8C3D119已知两个等差数列5,8,11,和3,7,11,都有100项,则它们的公共项的个数为()A25B24C20D1910设Sn为等差数列an的前n项和,若满足an=an1+2(n2),且S3=9,则a1=()A5B3C1D111(2005黑龙江)如果数列an是等差数列,则()Aa1+a8a4+a5Ba1+a8=a4+a5Ca1+a8a4+a5Da1a8=a4a512(2004福建)设Sn是等差数列an的前n项和,若=()A1
3、B1C2D13(2009安徽)已知an为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A1B1C3D714在等差数列an中,a2=4,a6=12,那么数列的前n项和等于()ABCD15已知Sn为等差数列an的前n项的和,a2+a5=4,S7=21,则a7的值为()A6B7C8D916已知数列an为等差数列,a1+a3+a5=15,a4=7,则s6的值为()A30B35C36D2417(2012营口)等差数列an的公差d0,且,则数列an的前n项和Sn取得最大值时的项数n是()A5B6C5或6D6或718(2012辽宁)在等差数列an中,已知a4+a8=16,则该数
4、列前11项和S11=()A58B88C143D17619已知数列an等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=()A1B0C1D220(理)已知数列an的前n项和Sn=n28n,第k项满足4ak7,则k=()A6B7C8D921数列an的前n项和为Sn,若Sn=2n217n,则当Sn取得最小值时n的值为()A4或5B5或6C4D522等差数列an中,an=2n4,则S4等于()A12B10C8D423若an为等差数列,a3=4,a8=19,则数列an的前10项和为()A230B140C115D9524等差数列an中,a3+a8=5,则前10项
5、和S10=()A5B25C50D10025设Sn是公差不为0的等差数列an的前n项和,且S1,S2,S4成等比数列,则等于()A1B2C3D426设an=2n+21,则数列an从首项到第几项的和最大()A第10项B第11项C第10项或11项D第12项二填空题(共4小题)27如果数列an满足:=_28如果f(n+1)=f(n)+1(n=1,2,3),且f(1)=2,则f(100)=_29等差数列an的前n项的和,则数列|an|的前10项之和为_30已知an是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16()求数列an的通项公式:()若数列an和数列bn满足等式:an=(n为正整
6、数),求数列bn的前n项和Sn参考答案与试题解析一选择题(共26小题)1已知等差数列an中,a3=9,a9=3,则公差d的值为()AB1CD1考点:等差数列501974 专题:计算题分析:本题可由题意,构造方程组,解出该方程组即可得到答案解答:解:等差数列an中,a3=9,a9=3,由等差数列的通项公式,可得解得,即等差数列的公差d=1故选D点评:本题为等差数列的基本运算,只需构造方程组即可解决,数基础题2已知数列an的通项公式是an=2n+5,则此数列是()A以7为首项,公差为2的等差数列B以7为首项,公差为5的等差数列C以5为首项,公差为2的等差数列D不是等差数列考点:等差数列501974
7、 专题:计算题分析:直接根据数列an的通项公式是an=2n+5求出首项,再把相邻两项作差求出公差即可得出结论解答:解:因为an=2n+5,所以 a1=21+5=7;an+1an=2(n+1)+5(2n+5)=2故此数列是以7为首项,公差为2的等差数列故选A点评:本题主要考查等差数列的通项公式的应用如果已知数列的通项公式,可以求出数列中的任意一项3在等差数列an中,a1=13,a3=12,若an=2,则n等于()A23B24C25D26考点:等差数列501974 专题:综合题分析:根据a1=13,a3=12,利用等差数列的通项公式求得d的值,然后根据首项和公差写出数列的通项公式,让其等于2得到关
8、于n的方程,求出方程的解即可得到n的值解答:解:由题意得a3=a1+2d=12,把a1=13代入求得d=,则an=13(n1)=n+=2,解得n=23故选A点评:此题考查学生灵活运用等差数列的通项公式化简求值,是一道基础题4等差数列an的前n项和为Sn,已知S3=6,a4=8,则公差d=()A一1B2C3D一2考点:等差数列501974 专题:计算题分析:根据等差数列的前三项之和是6,得到这个数列的第二项是2,这样已知等差数列的;两项,根据等差数列的通项公式,得到数列的公差解答:解:等差数列an的前n项和为Sn,S3=6,a2=2a4=8,8=2+2dd=3,故选C点评:本题考查等差数列的通项
9、,这是一个基础题,解题时注意应用数列的性质,即前三项的和等于第二项的三倍,这样可以简化题目的运算5两个数1与5的等差中项是()A1B3C2D考点:等差数列501974 专题:计算题分析:由于a,b的等差中项为,由此可求出1与5的等差中项解答:解:1与5的等差中项为:=3,故选B点评:本题考查两个数的等差中项,牢记公式a,b的等差中项为:是解题的关键,属基础题6一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A2B3C4D5考点:等差数列501974 专题:计算题分析:设等差数列an的公差为d,因为数列前六项均为正数,第七项起为负数,所以,结合公差为整数
10、进而求出数列的公差解答:解:设等差数列an的公差为d,所以a6=23+5d,a7=23+6d,又因为数列前六项均为正数,第七项起为负数,所以,因为数列是公差为整数的等差数列,所以d=4故选C点评:解决此类问题的关键是熟练掌握等差数列的通项公式,并且结合正确的运算7(2012福建)等差数列an中,a1+a5=10,a4=7,则数列an的公差为()A1B2C3D4考点:等差数列的通项公式501974 专题:计算题分析:设数列an的公差为d,则由题意可得 2a1+4d=10,a1+3d=7,由此解得d的值解答:解:设数列an的公差为d,则由a1+a5=10,a4=7,可得 2a1+4d=10,a1+
11、3d=7,解得 d=2,故选B点评:本题主要考查等差数列的通项公式的应用,属于基础题8数列的首项为3,为等差数列且,若,则=()A0B8C3D11考点:等差数列的通项公式501974 专题:计算题分析:先确定等差数列的通项,再利用,我们可以求得的值解答:解:为等差数列,bn=b3+(n3)2=2n8b8=a8a1数列的首项为3288=a83,a8=11故选D点评:本题考查等差数列的通项公式的应用,由等差数列的任意两项,我们可以求出数列的通项,是基础题9已知两个等差数列5,8,11,和3,7,11,都有100项,则它们的公共项的个数为()A25B24C20D19考点:等差数列的通项公式50197
12、4 专题:计算题分析:(法一):根据两个等差数列的相同的项按原来的先后次序组成一个等差数列,且公差为原来两个公差的最小公倍数求解,(法二)由条件可知两个等差数列的通项公式,可用不定方程的求解方法来求解解答:解法一:设两个数列相同的项按原来的前后次序组成的新数列为an,则a1=11数列5,8,11,与3,7,11,公差分别为3与4,an的公差d=34=12,an=11+12(n1)=12n1又5,8,11,与3,7,11,的第100项分别是302与399,an=12n1302,即n25.5又nN*,两个数列有25个相同的项故选A解法二:设5,8,11,与3,7,11,分别为an与bn,则an=3
13、n+2,bn=4n1设an中的第n项与bn中的第m项相同,即3n+2=4m1,n= m1又m、nN*,可设m=3r(rN*),得n=4r1根据题意得 13r100 14r1100 解得rrN*从而有25个相同的项故选A点评:解法一利用了等差数列的性质,解法二利用了不定方程的求解方法,对学生的运算能力及逻辑思维能力的要求较高10设Sn为等差数列an的前n项和,若满足an=an1+2(n2),且S3=9,则a1=()A5B3C1D1考点:等差数列的通项公式501974 专题:计算题分析:根据递推公式求出公差为2,再由S3=9以及前n项和公式求出a1的值解答:解:an=an1+2(n2),anan1
14、=2(n2),等差数列an的公差是2,由S3=3a1+=9解得,a1=1故选D点评:本题考查了等差数列的定义,以及前n项和公式的应用,即根据代入公式进行求解11(2005黑龙江)如果数列an是等差数列,则()Aa1+a8a4+a5Ba1+a8=a4+a5Ca1+a8a4+a5Da1a8=a4a5考点:等差数列的性质501974 分析:用通项公式来寻求a1+a8与a4+a5的关系解答:解:a1+a8(a4+a5)=2a1+7d(2a1+7d)=0a1+a8=a4+a5故选B点评:本题主要考查等差数列通项公式,来证明等差数列的性质12(2004福建)设Sn是等差数列an的前n项和,若=()A1B1
15、C2D考点:等差数列的性质501974 专题:计算题分析:充分利用等差数列前n项和与某些特殊项之间的关系解题解答:解:设等差数列an的首项为a1,由等差数列的性质可得a1+a9=2a5,a1+a5=2a3,=1,故选A点评:本题主要考查等差数列的性质、等差数列的前n项和公式以及等差中项的综合应用,已知等差数列an的前n项和为Sn,则有如下关系S2n1=(2n1)an13(2009安徽)已知an为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A1B1C3D7考点:等差数列的性质501974 专题:计算题分析:根据已知条件和等差中项的性质可分别求得a3和a4的值,进而
16、求得数列的公差,最后利用等差数列的通项公式求得答案解答:解:由已知得a1+a3+a5=3a3=105,a2+a4+a6=3a4=99,a3=35,a4=33,d=a4a3=2a20=a3+17d=35+(2)17=1故选B点评:本题主要考查了等差数列的性质和等差数列的通项公式的应用解题的关键是利用等差数列中等差中项的性质求得a3和a414在等差数列an中,a2=4,a6=12,那么数列的前n项和等于()ABCD考点:数列的求和;等差数列的性质501974 专题:计算题分析:求出等差数列的通项,要求的和是一个等差数列与一个等比数列的积构成的数列,利用错位相减法求出数列的前n项的和解答:解:等差数
17、列an中,a2=4,a6=12;公差d=;an=a2+(n2)2=2n;的前n项和,=两式相减得=故选B点评:求数列的前n项的和,先判断通项的特点,据通项的特点选择合适的求和方法15已知Sn为等差数列an的前n项的和,a2+a5=4,S7=21,则a7的值为()A6B7C8D9考点:等差数列的性质501974 专题:计算题分析:由a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4,根据等差数列的前n项和公式可得,联立可求d,a1,代入等差数列的通项公式可求解答:解:等差数列an中,a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4根据等差数列的前
18、n项和公式可得,所以 a1+a7=6可得d=2,a1=3所以a7=9 故选D点评:本题主要考查了等差数列的前n项和公式及等差数列的性质的综合应用,属于基础试题16已知数列an为等差数列,a1+a3+a5=15,a4=7,则s6的值为()A30B35C36D24考点:等差数列的性质501974 专题:计算题分析:利用等差中项的性质求得a3的值,进而利用a1+a6=a3+a4求得a1+a6的值,代入等差数列的求和公式中求得答案解答:解:a1+a3+a5=3a3=15,a3=5a1+a6=a3+a4=12s6=6=36故选C点评:本题主要考查了等差数列的性质特别是等差中项的性质17(2012营口)等
19、差数列an的公差d0,且,则数列an的前n项和Sn取得最大值时的项数n是()A5B6C5或6D6或7考点:等差数列的前n项和;等差数列的通项公式501974 专题:计算题分析:由,知a1+a11=0由此能求出数列an的前n项和Sn取得最大值时的项数n解答:解:由,知a1+a11=0a6=0,故选C点评:本题主要考查等差数列的性质,求和公式要求学生能够运用性质简化计算18(2012辽宁)在等差数列an中,已知a4+a8=16,则该数列前11项和S11=()A58B88C143D176考点:等差数列的性质;等差数列的前n项和501974 专题:计算题分析:根据等差数列的定义和性质得 a1+a11=
20、a4+a8=16,再由S11= 运算求得结果解答:解:在等差数列an中,已知a4+a8=16,a1+a11=a4+a8=16,S11=88,故选B点评:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于中档题19已知数列an等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=()A1B0C1D2考点:等差数列的通项公式;等差数列的前n项和501974 专题:计算题分析:由等差数列得性质可得:5a5=10,即a5=2同理可得5a6=20,a6=4,再由等差中项可知:a4=2a5a6=0解答:解:由等差数列得性质可得:a1+a9=a3+a
21、7=2a5,又a1+a3+a5+a7+a9=10,故5a5=10,即a5=2同理可得5a6=20,a6=4再由等差中项可知:a4=2a5a6=0故选B点评:本题考查等差数列的性质及等差中项,熟练利用性质是解决问题的关键,属基础题20(理)已知数列an的前n项和Sn=n28n,第k项满足4ak7,则k=()A6B7C8D9考点:等差数列的通项公式;等差数列的前n项和501974 专题:计算题分析:先利用公式an=求出an,再由第k项满足4ak7,建立不等式,求出k的值解答:解:an=n=1时适合an=2n9,an=2n94ak7,42k97,k8,又kN+,k=7,故选B点评:本题考查数列的通项
22、公式的求法,解题时要注意公式an=的合理运用,属于基础题21数列an的前n项和为Sn,若Sn=2n217n,则当Sn取得最小值时n的值为()A4或5B5或6C4D5考点:等差数列的前n项和501974 专题:计算题分析:把数列的前n项的和Sn看作是关于n的二次函数,把关系式配方后,又根据n为正整数,即可得到Sn取得最小值时n的值解答:解:因为Sn=2n217n=2,又n为正整数,所以当n=4时,Sn取得最小值故选C点评:此题考查学生利用函数思想解决实际问题的能力,是一道基础题22等差数列an中,an=2n4,则S4等于()A12B10C8D4考点:等差数列的前n项和501974 专题:计算题分
23、析:利用等差数列an中,an=2n4,先求出a1,d,再由等差数列的前n项和公式求S4解答:解:等差数列an中,an=2n4,a1=24=2,a2=44=0,d=0(2)=2,S4=4a1+=4(2)+43=4故选D点评:本题考查等差数列的前n项和公式的应用,是基础题解题时要认真审题,注意先由通项公式求出首项和公差,再求前四项和23若an为等差数列,a3=4,a8=19,则数列an的前10项和为()A230B140C115D95考点:等差数列的前n项和501974 专题:综合题分析:分别利用等差数列的通项公式化简已知的两个等式,得到和,联立即可求出首项和公差,然后利用求出的首项和公差,根据公差
24、数列的前n项和的公式即可求出数列前10项的和解答:解:a3=a1+2d=4,a8=a1+7d=19,得5d=15,解得d=3,把d=3代入求得a1=2,所以S10=10(2)+3=115故选C点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道基础题24等差数列an中,a3+a8=5,则前10项和S10=()A5B25C50D100考点:等差数列的前n项和;等差数列的性质501974 专题:计算题分析:根据条件并利用等差数列的定义和性质可得 a1+a10=5,代入前10项和S10 = 运算求得结果解答:解:等差数列an中,a3+a8=5,a1+a10=5,前10项和S1
25、0 =25,故选B点评:本题主要考查等差数列的定义和性质,以及前n项和公式的应用,求得a1+a10=5,是解题的关键,属于基础题25设Sn是公差不为0的等差数列an的前n项和,且S1,S2,S4成等比数列,则等于()A1B2C3D4考点:等差数列的前n项和501974 专题:计算题分析:由S1,S2,S4成等比数列,根据等比数列的性质得到S22=S1S4,然后利用等差数列的前n项和的公式分别表示出各项后,代入即可得到首项和公差的关系式,根据公差不为0,即可求出公差与首项的关系并解出公差d,然后把所求的式子利用等差数列的通项公式化简后,把公差d的关系式代入即可求出比值解答:解:由S1,S2,S4
26、成等比数列,(2a1+d)2=a1(4a1+6d)d0,d=2a1=3故选C点评:此题考查学生掌握等比数列的性质,灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道综合题26设an=2n+21,则数列an从首项到第几项的和最大()A第10项B第11项C第10项或11项D第12项考点:等差数列的前n项和;二次函数的性质501974 专题:转化思想分析:方法一:由an,令n=1求出数列的首项,利用anan1等于一个常数,得到此数列为等差数列,然后根据求出的首项和公差写出等差数列的前n项和的公式,得到前n项的和与n成二次函数关系,其图象为开口向下的抛物线,当n=时,前n项的和有最大值,即可得
27、到正确答案;方法二:令an大于等于0,列出关于n的不等式,求出不等式的解集即可得到n的范围,在n的范围中找出最大的正整数解,从这项以后的各项都为负数,即可得到正确答案解答:解:方法一:由an=2n+21,得到首项a1=2+21=19,an1=2(n1)+21=2n+23,则anan1=(2n+21)(2n+23)=2,(n1,nN+),所以此数列是首项为19,公差为2的等差数列,则Sn=19n+(2)=n2+20n,为开口向下的抛物线,当n=10时,Sn最大所以数列an从首项到第10项和最大方法二:令an=2n+210,解得n,因为n取正整数,所以n的最大值为10,所以此数列从首项到第10项的
28、和都为正数,从第11项开始为负数,则数列an从首项到第10项的和最大故选A点评:此题的思路可以先确定此数列为等差数列,根据等差数列的前n项和的公式及二次函数求最值的方法得到n的值;也可以直接令an0,求出解集中的最大正整数解,要求学生一题多解二填空题(共4小题)27如果数列an满足:=考点:数列递推式;等差数列的通项公式501974 专题:计算题分析:根据所给的数列的递推式,看出数列是一个等差数列,根据所给的原来数列的首项看出等差数列的首项,根据等差数列的通项公式写出数列,进一步得到结果解答:解:根据所给的数列的递推式数列是一个公差是5的等差数列,a1=3,=,数列的通项是故答案为:点评:本题
29、看出数列的递推式和数列的通项公式,本题解题的关键是确定数列是一个等差数列,利用等差数列的通项公式写出通项,本题是一个中档题目28如果f(n+1)=f(n)+1(n=1,2,3),且f(1)=2,则f(100)=101考点:数列递推式;等差数列的通项公式501974 专题:计算题分析:由f(n+1)=f(n)+1,xN+,f(1)=2,依次令n=1,2,3,总结规律得到f(n)=n+1,由此能够求出f(100)解答:解:f(n+1)=f(n)+1,xN+,f(1)=2,f(2)=f(1)+1=2+1=3,f(3)=f(2)+1=3+1=4,f(4)=f(3)+1=4+1=5,f(n)=n+1,f
30、(100)=100+1=101故答案为:101点评:本题考查数列的递推公式的应用,是基础题解题时要认真审题,仔细解答29等差数列an的前n项的和,则数列|an|的前10项之和为58考点:数列的求和;等差数列的通项公式501974 专题:计算题分析:先求出等差数列的前两项,可得通项公式为an=72n,从而得到n3时,|an|=72n,当n3时,|an|=2n7分别求出前3项的和、第4项到第10项的和,相加即得所求解答:解:由于等差数列an的前n项的和,故a1=s1=5,a2=s2s1=85=3,故公差d=2,故an=5+(n1)(2)=72n当n3时,|an|=72n,当n3时,|an|=2n7
31、故前10项之和为 a1+a2+a3a4a5a10=+=9+49=58,故答案为 58点评:本题主要考查等差数列的通项公式,前n项和公式及其应用,体现了分类讨论的数学思想,属于中档题30已知an是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16()求数列an的通项公式:()若数列an和数列bn满足等式:an=(n为正整数),求数列bn的前n项和Sn考点:数列的求和;等差数列的通项公式501974 专题:计算题分析:(1)将已知条件a3a6=55,a2+a7=16,利用等差数列的通项公式用首项与公差表示,列出方程组,求出首项与公差,进一步求出数列an的通项公式(2)将已知等式仿写出
32、一个新等式,两个式子相减求出数列bn的通项,利用等比数列的前n项和公式求出数列bn的前n项和Sn解答:解(1)解:设等差数列an 的公差为d,则依题设d0 由a2+a7=16得2a1+7d=16 由a3a6=55,得(a1+2d)(a1+5d)=55 由得2a1=167d 将其代入得(163d)(16+3d)=220即2569d2=220d2=4,又d0,d=2,代入得a1=1an=1+(n1)2=2n1 所以an=2n1(2)令cn=,则有an=c1+c2+cn,an+1=c1+c2+cn1两式相减得an+1an=cn+1,由(1)得a1=1,an+1an=2cn+1=2,cn=2(n2),即当n2时,bn=2n+1又当n=1时,b1=2a1=2bn=BR于是Sn=b1+b2+b3+bn=2+23+24+2n+1=2+22+23+24+2n+14=6,即Sn=2n+26点评:求一个数列的前n项和应该先求出数列的通项,利用通项的特点,然后选择合适的求和的方法18 / 18