1、2017年山东省济南市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1(3分)在实数0,2,5,3中,最大的是()A0B2C5D32(3分)如图所示的几何体,它的左视图是()ABCD3(3分)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里数字5550用科学记数法表示为()A0.555104B5.55104C5.55103D55.51034(3分)如图,直线ab,直线l与a,b分别相交于A,B两点,ACAB交b于点C,1=40,则2的度数是()A40B45C50D605(3分)
2、中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()ABCD6(3分)化简a2+aba-baba-b的结果是()Aa2Ba2a-bCa-bbDa+bb7(3分)关于x的方程x2+5x+m=0的一个根为2,则另一个根是()A6B3C3D68(3分)九章算术是中国传统数学的重要著作,方程术是它的最高成就其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是()A&y-8x=3&y-7x=4B&y
3、-8x=3&7x-y=4C&8x-y=3&y-7x=4D&8x-y=3&7x-y=49(3分)如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()A12B13C16D2310(3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,CAB=60,若量出AD=6cm,则圆形螺母的外直径是()A12cmB24cmC63cmD123cm11(3分)将一次函数y=2x的图象向上平移2个单位后,当y0时,x的取值范围是()Ax1Bx1Cx2Dx212(3分)如图,为了测量山坡护坡石坝的坡度
4、(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A34B3C35D413(3分)如图,正方形ABCD的对角线AC,BD相交于点O,AB=32,E为OC上一点,OE=1,连接BE,过点A作AFBE于点F,与BD交于点G,则BF的长是()A3105B22C354D32214(3分)二次函数y=ax2+bx+c(a0)的图象经过点(2,0),(x0,0),1x02,与y轴的负半轴相交,且交点在(0,2)的上方,下列结论:b0;2ab;2ab10;2a+c0其中正确结论的个
5、数是()A1B2C3D415(3分)如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,BD表示一条以A为圆心,以AB为半径的圆弧形道路如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()AABEGBAEDCCAEBFDABDC二、填空题(本大题共6小题,每小题3分,共18分)16(3分)分解因式:x24x+4= 17(3分)计算:|24|+(3)0= 18(3分)在学校的歌咏比赛中,10名选手的成绩如统计
6、图所示,则这10名选手成绩的众数是 19(3分)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300cm2,BAC=120,BD=2AD,则BD的长度为 cm20(3分)如图,过点O的直线AB与反比例函数y=kx的图象交于A,B两点,A(2,1),直线BCy轴,与反比例函数y=-3kx(x0)的图象交于点C,连接AC,则ABC的面积为 21(3分)定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”如图,若P(1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5环保低碳的共享单车,正式成为市民出行喜欢的
7、交通工具设A,B,C三个小区的坐标分别为A(3,1),B(5,3),C(1,5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为 三、解答题(本大题共8小题,共57分)22(6分)(1)先化简,再求值:(a+3)2(a+2)(a+3),其中a=3(2)解不等式组:3x-52(x-2)x2x-123(4分)如图,在矩形ABCD,AD=AE,DFAE于点F求证:AB=DF24(4分)如图,AB是O的直径,ACD=25,求BAD的度数25(8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树
8、用了9000元已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?26(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a0.26180.36714b880.16合计c1(1)统计表中的a= ,b= ,c= ;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅
9、读7本及以上的人数27(9分)如图1,OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx(x0)的图象经过的B(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=kx(x0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由28(9分)某学习小组的学生在学习中遇到了下面的问题:如图1,在ABC和ADE中,ACB=AED=90,CAB=EAD=60,点E,A,C在同一条直线上,连接BD,点
10、F是BD的中点,连接EF,CF,试判断CEF的形状并说明理由问题探究:(1)小婷同学提出解题思路:先探究CEF的两条边是否相等,如EF=CF,以下是她的证明过程证明:延长线段EF交CB的延长线于点GF是BD的中点,BF=DFACB=AED=90,EDCGBGF=DEF又BFG=DFE,BGFDEF( )EF=FGCF=EF=12EG请根据以上证明过程,解答下列两个问题:在图1中作出证明中所描述的辅助线;在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择)(2)在(1)的探究结论的基础上,请你帮助小婷求出CEF的度数,并判断CEF的形状问题拓展:(3)如图2,当ADE绕点A逆时针旋
11、转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断CEF的形状并给出证明29(9分)如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tanOAD=2,抛物线M1:y=ax2+bx(a0)过A,D两点(1)求点D的坐标和抛物线M1的表达式;(2)点P是抛物线M1对称轴上一动点,当CPA=90时,求所有符合条件的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m(m0)个单位得到抛物线M2设点D平移后的对应点为点D,当点D恰好在直线AE上时,求m的值;当1xm(m1)时,若抛物线M2与直线AE有两个交点
12、,求m的取值范围2017年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分)1(3分)(2017济南)在实数0,2,5,3中,最大的是()A0B2C5D3【考点】2A:实数大小比较【分析】根据正负数的大小比较,估算无理数的大小进行判断即可【解答】解:253,实数0,2,5,3中,最大的是3故选D【点评】本题考查了实数的大小比较,要注意无理数的大小范围2(3分)(2017济南)如图所示的几何体,它的左视图是()ABCD【考点】U2:简单组合体的三视图【分析】根据几何体确定出其左视图即可【解答】解:根据题意得:几何体的左视图为:,故选A【点评】此题考查了
13、简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力3(3分)(2017济南)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里数字5550用科学记数法表示为()A0.555104B5.55104C5.55103D55.5103【考点】1I:科学记数法表示较大的数【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【解
14、答】解:5550=5.55103,故选C【点评】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4(3分)(2017济南)如图,直线ab,直线l与a,b分别相交于A,B两点,ACAB交b于点C,1=40,则2的度数是()A40B45C50D60【考点】JA:平行线的性质;J3:垂线【分析】先根据平行线的性质求出ABC的度数,再根据垂直的定义和余角的性质求出2的度数【解答】解:直线ab,1=CBA,1=40,CBA=40,ACAB,2+CBA=90,2=50,故选C【点评】本题主要考查了平行线的性质,解题的关键是掌
15、握两直线平行,同位角相等5(3分)(2017济南)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()ABCD【考点】R5:中心对称图形;P3:轴对称图形【分析】根据轴对称图形与中心对称图形的概念求解【解答】解:B是轴对称图形又是中心对称图形,故选:B【点评】本题考查了中心对称图形,掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合6(3分)(2017济南)化简a2+aba-baba-b的结果是()Aa2Ba2a-bCa-bbDa+bb【考点】6A:分式的乘
16、除法【分析】先将分子因式分解,再将除法转化为乘法后约分即可【解答】解:原式=a(a+b)a-ba-bab=a+bb,故选:D【点评】本题主要考查分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键7(3分)(2017济南)关于x的方程x2+5x+m=0的一个根为2,则另一个根是()A6B3C3D6【考点】AB:根与系数的关系【分析】设方程的另一个根为n,根据两根之和等于ba,即可得出关于n的一元一次方程,解之即可得出结论【解答】解:设方程的另一个根为n,则有2+n=5,解得:n=3故选C【点评】本题考查了根与系数的关系,牢记两根之和等于ba、两根之积等于ca是解题的关键8(3分)(2017济
17、南)九章算术是中国传统数学的重要著作,方程术是它的最高成就其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是()A&y-8x=3&y-7x=4B&y-8x=3&7x-y=4C&8x-y=3&y-7x=4D&8x-y=3&7x-y=4【考点】99:由实际问题抽象出二元一次方程组【分析】设合伙人数为x人,物价为y钱,根据题意得到相等关系:8人数物品价值=3,物品价值7人数=4,据此可列方程组【解答】解:设合伙人数为x人,物价为y钱,根
18、据题意,可列方程组:&8x-y=3&y-7x=4,故选:C【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系9(3分)(2017济南)如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()A12B13C16D23【考点】X6:列表法与树状图法【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得聪聪从入口A进入景区并从C,D出口离开的情况,再利用概率公式求解即可求得答案【解答】解:画树形图如图得:由树形图可
19、知所有可能的结果有6种,设小红从入口A进入景区并从C,D出口离开的概率是P,小红从入口A进入景区并从C,D出口离开的有2种情况,P=13故选:B【点评】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比10(3分)(2017济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,CAB=60,若量出AD=6cm,则圆形螺母的外直径是()A12cmB24cmC63cmD123cm【考点】MC:切线的性质【分析】设圆形螺母的圆心为O,连接OD,OE,OA,如图
20、所示:根据切线的性质得到AO为DAB的平分线,ODAC,ODAC,又CAB=60,得到OAE=OAD=12DAB=60,根据三角函数的定义求出OD的长,即为圆的半径,进而确定出圆的直径【解答】解:设圆形螺母的圆心为O,与AB切于E,连接OD,OE,OA,如图所示:AD,AB分别为圆O的切线,AO为DAB的平分线,ODAC,ODAC,又CAB=60,OAE=OAD=12DAB=60,在RtAOD中,OAD=60,AD=6cm,tanOAD=tan60=ODAD,即OD6=3,OD=63cm,则圆形螺母的直径为123cm故选D【点评】此题考查了切线的性质,切线长定理,锐角三角函数定义,以及特殊角的
21、三角函数值,熟练掌握性质及定理是解本题的关键11(3分)(2017济南)将一次函数y=2x的图象向上平移2个单位后,当y0时,x的取值范围是()Ax1Bx1Cx2Dx2【考点】F9:一次函数图象与几何变换【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y0时,x的取值范围【解答】解:将y=2x的图象向上平移2个单位,平移后解析式为:y=2x+2,当y=0时,x=1,故y0,则x的取值范围是:x1故选A【点评】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键12(3分)(2017济南)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把
22、一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A34B3C35D4【考点】T9:解直角三角形的应用坡度坡角问题【分析】先过C作CFAB于F,根据DECF,可得ADAC=DECF,进而得出CF=3,根据勾股定理可得AF的长,根据CF和BF的长可得石坝的坡度【解答】解:如图,过C作CFAB于F,则DECF,ADAC=DECF,即15=0.6CF,解得CF=3,RtACF中,AF=52-32=4,又AB=3,BF=43=1,石坝的坡度为CFBF=31=3,故选:B【点评】本题主要考查了坡度问题,在解决坡度的有关问
23、题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题13(3分)(2017济南)如图,正方形ABCD的对角线AC,BD相交于点O,AB=32,E为OC上一点,OE=1,连接BE,过点A作AFBE于点F,与BD交于点G,则BF的长是()A3105B22C354D322【考点】LE:正方形的性质;KD:全等三角形的判定与性质【分析】根据正方形的性质、全等三角形的判定定理证明GAOEBO,得到OG=OE=1,证明BFGBOE,根据相似三角形的性质计算即可【解答】解:四边形ABCD是正方形,AB=32,AOB=90,AO=
24、BO=CO=3,AFBE,EBO=GAO,在GAO和EBO中,&GAO=EBO&AO=BO&AOG=BOE,GAOEBO,OG=OE=1,BG=2,在RtBOE中,BE=OB2+OE2=10,BFG=BOE=90,GBF=EBO,BFGBOE,BFOB=BGBE,即BF3=210,解得,BF=3105,故选:A【点评】本题考查的是正方形的性质、全等三角形的判定和性质以及相似三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键14(3分)(2017济南)二次函数y=ax2+bx+c(a0)的图象经过点(2,0),(x0,0),1x02,与y轴的负半轴相交,且交点在(0,2)的上方,下列结
25、论:b0;2ab;2ab10;2a+c0其中正确结论的个数是()A1B2C3D4【考点】H4:二次函数图象与系数的关系【分析】由图象开口向上知a0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1x12,则该抛物线的对称轴为x=b2a=-2+x1212,即 ba1,于是得到b0;故正确;由x=2时,4a2b+c=0得2ab=c2,而2c0,解不等式即可得到2ab,所以正确由知2ab0,于是得到2ab10,故正确;把(2,0)代入y=ax2+bx+c得:4a2b+c=0,即2b=4a+c0(因为b0),等量代换得到2a+c0,故正确【解答】解:如图:由图象开口向上知a0,由y=
26、ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1x12,则该抛物线的对称轴为x=b2a=-2+x1212,即 ba1,由a0,两边都乘以a得:ba,a0,对称轴x=b2a0,b0;故正确;由x=2时,4a2b+c=0得2ab=c2,而2c0,2ab0,所以错误2ab0,2ab10,故正确;把(2,0)代入y=ax2+bx+c得:4a2b+c=0,即2b=4a+c0(因为b0),当x=1时,a+b+c0,2a+2b+2c0,6a+3c0,即2a+c0,正确;故选D【点评】本题考查了二次函数图象与系数的关系,主要考查学生根据图形进行推理和辨析的能力,用了数形结合思想,题目比较好,但是难
27、度偏大15(3分)(2017济南)如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,BD表示一条以A为圆心,以AB为半径的圆弧形道路如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()AABEGBAEDCCAEBFDABDC【考点】E7:动点问题的函数图象【分析】根据函数图象的中间一部分为水平方向的线段,可知沿着弧形道路步行,根据函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x
28、的范围,即可得出第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,故中间一段图象对应的路径为BD,又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是ABDC(或ADBC),故选:D【点评】本题主要考查了动点问题的函数图象,解题时注意:在点光源的照射下,在不同位置,物体高度与影长不成
29、比例二、填空题(本大题共6小题,每小题3分,共18分)16(3分)(2017济南)分解因式:x24x+4=(x2)2【考点】54:因式分解运用公式法【分析】直接用完全平方公式分解即可【解答】解:x24x+4=(x2)2【点评】本题主要考查利用完全平方公式分解因式完全平方公式:(ab)2=a22ab+b217(3分)(2017济南)计算:|24|+(3)0=7【考点】2C:实数的运算;6E:零指数幂【分析】直接利用绝对值的性质结合零指数幂的性质计算得出答案【解答】解:|24|+(3)0=6+1=7故答案为:7【点评】此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键18(3分)(2
30、017济南)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是90【考点】W5:众数【分析】根据众数的定义和给出的数据可直接得出答案【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故答案为:90【点评】此题考查了众数,掌握一组数据中出现次数最多的数据叫做这组数据的众数是本题的关键19(3分)(2017济南)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300cm2,BAC=120,BD=2AD,则BD的长度为20cm【考点】MO:扇形面积的计算【分析】设AD=x,则AB=3x由题意300=120(3x)2360,解方程即可【解答】解:设AD
31、=x,则AB=3x由题意300=120(3x)2360,解得x=10,BD=2x=20cm故答案为20【点评】本题考查扇形的面积公式、解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型20(3分)(2017济南)如图,过点O的直线AB与反比例函数y=kx的图象交于A,B两点,A(2,1),直线BCy轴,与反比例函数y=-3kx(x0)的图象交于点C,连接AC,则ABC的面积为8【考点】G8:反比例函数与一次函数的交点问题【分析】由A(2,1)求得两个反比例函数分别为y=2x,y=-6x,与AB的解析式y=12x,解方程组求得B的坐标,进而求得C点的纵坐标,即可求得BC,根据三
32、角形的面积公式即可求得结论【解答】解:A(2,1)在反比例函数y=kx的图象上,k=21=2,两个反比例函数分别为y=2x,y=-6x,设AB的解析式为y=kx,把A(2,1)代入得,k=12,y=12x,解方程组&y=12x&y=2x得:&x1=2&y1=1,&x2=-2&y2=-1,B(2,1),BCy轴,C点的横坐标为2,C点的纵坐标为-6-2=3,BC=3(1)=4,ABC的面积为1244=8,故答案为:8【点评】本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键21(3分)(2017济南)定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达
33、点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”如图,若P(1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5环保低碳的共享单车,正式成为市民出行喜欢的交通工具设A,B,C三个小区的坐标分别为A(3,1),B(5,3),C(1,5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为(1,2)【考点】D3:坐标确定位置【分析】直接利用实际距离的定义,结合A,B,C点的坐标,进而得出答案【解答】解:由题意可得:M到A,B,C的“实际距离”相等,则点M的坐标为(1,2),此时M到A,B,C的实际距离都为5故答案为:(1,2)【点评】此
34、题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键三、解答题(本大题共8小题,共57分)22(6分)(2017济南)(1)先化简,再求值:(a+3)2(a+2)(a+3),其中a=3(2)解不等式组:3x-52(x-2)x2x-1【考点】4J:整式的混合运算化简求值;CB:解一元一次不等式组【分析】(1)根据完全平方公式和多项式乘多项式可以解答本题;(2)根据解不等式组的方法可以解答本题【解答】解:(1)(a+3)2(a+2)(a+3)=a2+6a+9a25a6=a+3,当a=3时,原式=3+3=6;(2)3x-52(x-2)x2x-1由不等式,得x1,由不等式,得x2故原不等式组的解
35、集是1x2【点评】本题考查整式的混合运算化简求值、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法23(4分)(2017济南)如图,在矩形ABCD,AD=AE,DFAE于点F求证:AB=DF【考点】LB:矩形的性质;KD:全等三角形的判定与性质【分析】利用矩形和直角三角形的性质得到AEB=EAD、AFD=B,从而证得两个三角形全等,可得结论【解答】证明:四边形ABCD是矩形,ADBC,B=90,AEB=DAE,DFAE,AFD=B=90,在ABE和DFA中&AEB=DAE&AFD=B&AD=AEABEDFA,AB=DF【点评】本题考查了全等三角形的判定与性质、矩形的性质的知识,属于基
36、础题,难度不是很大,熟练掌握全等三角形的判定与性质是关键24(4分)(2017济南)如图,AB是O的直径,ACD=25,求BAD的度数【考点】M5:圆周角定理【分析】根据直径所对的圆周角是直角,构造直角三角形ABD,再根据同弧所对的圆周角相等,求得B的度数,即可求得BAD的度数【解答】解:AB为O直径ADB=90相同的弧所对应的圆周角相等,且ACD=25B=25BAD=90B=65【点评】考查了圆周角定理的推论利用直径所对的圆周角是直角是解题关键25(8分)(2017济南)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉
37、兰树用了9000元已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?【考点】B7:分式方程的应用【分析】根据题意可以列出相应的分式方程,从而可以解答本题【解答】解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,12000x+90001.5x=150,解得,x=120,经检验x=120是原分式方程的解,1.5x=180,答:银杏树和玉兰树的单价各是120元、180元【点评】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要经验26(8分)(2017济南)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,
38、某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a0.26180.36714b880.16合计c1(1)统计表中的a=10,b=0.28,c=50;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表【分析】(1)根据百分比=所占人数总人数计算即可;(2)求出a组人数,画出
39、直方图即可;(3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可;【解答】解:(1)由题意c=180.36=50,a=500.2=10,b=1450=0.28,故答案为10,0.28,50(2)频数分布表直方图如图所示(3)所有被调查学生课外阅读的平均本数=105+186+147+8850=6.4(本)(4)该校八年级共有1200名学生,该校八年级学生课外阅读7本及以上的人数有120014+850=528(名)【点评】本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型27(9分)(2017济南)如
40、图1,OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx(x0)的图象经过的B(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=kx(x0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由【考点】GB:反比例函数综合题【分析】(1)利用平行四边形的性质求出点B的坐标即可解决问题;(2)根据两直线垂直的条件,求出直线MN的解析式即可解决问题;(3)结论:BF=DE如图3中,延长BA交x
41、轴于N,作DMx轴于M,作NKEF交y轴于K设ON=n,OM=m,ME=a则BN=kn,DM=km由EDMEBN,推出EMEN=DMBN,即am+a-n=kmkn,可得a=m,由KNODEM,推出DE=KN,再证明四边形NKFB是平行四边形,即可解决问题;【解答】解:(1)如图1中,四边形OABC是平行四边形,AB=OC=3,A(2,1),B(2,4),把B(2,4)代入y=kx中,得到k=8,反比例函数的解析式为y=8x(2)如图2中,设K是OB的中点,则K(1,2)直线OB的解析式为y=2x,直线MN的解析式为y=12x+52,N(0,52),ON=52(3)结论:BF=DE理由如下:如图
42、3中,延长BA交x轴于N,作DMx轴于M,作NKEF交y轴于K设ON=n,OM=m,ME=a则BN=kn,DM=kmEDMEBN,EMEN=DMBN,am+a-n=kmkn,可得a=m,NKEF,KNO=DEM,KON=DME=90,ON=EM,KNODEM,DE=KN,FKBN,NKFB,四边形NKFB是平行四边形,NK=BF,BF=DE【点评】本题考查一次函数,反比例函数、平行四边形,全等三角形,相似三角形等几何知识结合在一起,综合性比较强,要求学生有较强的分析问题好解决问题的能力28(9分)(2017济南)某学习小组的学生在学习中遇到了下面的问题:如图1,在ABC和ADE中,ACB=AED=90,CAB=EAD=60,点E,A,C在同一条直线上,连接BD,点F是BD的中点,连接EF,CF,试判断CEF的形状并说明理由问题探究:(1)小婷同学提出解题思路:先探究CEF的两条边是否相等,如