1、个人收集整理 勿做商业用途第09讲 解一元一次方程(一)适用学科初中数学适用年级初中一年级适用区域全国人教版课时时长(分钟)120分钟知识点1. 移项的概念2. 方程中的合并同类项的步骤3。 系数化14. 解较简单的一元一次方程的步骤5. 用一元一次方程解决实际问题的步骤教学目标1。 理解并掌握一元一次方程移项、合并同类项的解题步骤2. 理解并掌握系数化1的方法3。 会用移项、合并同类项解一元一次方程4。 会用一元一次方程解决实际问题教学重点移项、合并同类项的解题步骤教学难点会解较简单的一元一次方程及实际问题教学过程一、复习预习回忆上节课内容:1。 一元一次方程的概念2。 等式的性质3. 方程
2、的解4。 利用等式的性质解一元一次方程的步骤5. 根据题意列方程的步骤二、知识讲解1. 方程中的合并同类项解方程时,将含有未知数的几个项合成一项叫合并同类项(第二章整式的加减里已学习过),它的依据是乘法的分配律,是分配律的逆用。2。 移项方程中的任何一项,都可以在改变符号后,从方程的一边移到方程的另一边,这种变形叫移项. 移项的依据是等式的基本性质1,移项的目的是将含有未知数的项移到方程的一边,将不含未知数的项移到另一边。3。 系数化1系数化1的目的,是将形如的方程化成的形式,也就是求出方程的解. 系数化1的依据是等式性质2,方程两边同时乘以系数()的倒数,或者同除以系数本身.4. 解较简单的
3、一元一次方程的一般步骤(1)移项,即通过移项把含有未知数的项放在等式的左边,把不含有未知数的项(常数项)移到等式的右边.(2)合并,即通过合并将方程化为().(3)系数化1,即根据等式性质2:方程两边同时都除以未知数系数,即得方程的解.5. 用一元一次方程解觉实际问题的一般步骤(1)审:审题,明确题目中的已知量是什么,未知量是什么,各数量之间有怎样的关系;(2)找:找出能够表示问题全部含义的一个相等关系;(3)设:设未知数(一般求什么,就设什么);(4)列:根据这个相等关系列出需要的式子,从而列出方程;(5)解:解所列出的方程,求出未知数的值;(6)求:求出问题中要求求出的所有未知量;(7)答
4、:检验所求的解是否符合题意,是否符合所列方程,并写出答案(包括单位名称)。考点/易错点1注意:(1)合并同类项的实质是系数的合并,字母及指数都不变。(2)在等号两边的同类项不能合并。(3)系数合并时要连同前面的“”号.(4)系数合并的实质是有理数的加法运算.考点/易错点2注意:(1)移项时,所移的项一定要变号,而且必须从方程的一边移到方程的另一边.如,把从方程的左边移到右边,结果为,不能写成.(2)移项的依据是等式性质1,变成是移项,而变成则不属于移项,它是利用加法交换律交换与的位置,它们都不变号,所以,大家要区别开以上两种不同的变形。(3)通常把未知项都移到“=”号的左边,常数项移到“=”号
5、的右边.考点/易错点3注意:(1)同学们解方程时易出现一下错误:如,系数化成1得。原因是颠倒了5和的顺序,两边都除以,作除数,要写到分母的位置上,5是被除的,要写到分子的位置上.(2)没有将最终结果化简或约分。考点/易错点4注意:(1)在一道实际问题中,往往含有几个未知数,应恰当地选择其中一个,用字母表示出来,然后根据数量间的关系,将其他几个未知量用含的代数式表示出来。有时也需要间接设未知数。设未知数的方法多种多样,关键是灵活.(2)解应用题,切勿漏写“答”,“设”和“答”都必须注明单位.(3)列方程时,要注意方程两边应是同一类量,并且单位统一.时间单位的统一要注意60进制.(4)一般情况下,
6、题中所给条件在列方程时不能重复使用,也不能漏掉不用,重复利用某一条件,会得到一个恒等式,虽然正确,但无法求出应用题的解.(5)对于求的方程的解,还要看它是否符合实际意义,然后作“答”。三、例题精析【例题1】【题干】下列的移项对不对?不对的错在哪里?应怎样改正?(1)从得(2)从得【答案】(1)不对,,(2)不对,【解析】移项根据的是等式性质1,移项要变号,不移项的不变号.【变形1】解方程把含未知数的顶移到方程的左边,不含未知数的项移到方程的右边,得_;方程两边合并同类项,得_;要使合并同类项后的系数为正数,可以把含未知数的项移到方程的_边,移项后合并同类项得_【答案】;右;【解析】将未知项移到
7、方程左边,常数项移到方程右边,合并同类项,再将未知项移到右边,可以将未知数系数化为正数【例题2】【题干】方程的解是x=_【答案】解:移项得:合并同类项得:故填6【解析】本题考查的是合并同类项,注意把一项从方程的左边移到方程的右边时要改变符号【变形1】解方程:【答案】解:移项得:合并同类项得:系数化1得:【解析】本题比较简单,解此题要注意移项要变号【变形2】若,那么等于()A1814.55 B1824。55 C1774。55 D1784.55【答案】B【解析】解:方程移项得:合并同类项得:;故答案选B合并同类项时要注意变号.【例题3】【题干】当=_时,代数式的值为5【答案】解:由题意得:,故应填
8、【解析】根据题意列出方程,直接解出的值【变形1】若代数式的值为,则【答案】解:代数式的值为,移项得:合并同类项得:化系数为1得:故填:【解析】先列出方程,再移项,再合并同类项,最后化系数为1,从而得到方程的解【例题4】【题干】小丁在解方程(为未知数)时,误将-看作+,解得方程的解是,则原方程的解为_【答案】解:把代入得:,解得:;原方程是,解这个方程得:【解析】本题中误将-看作+,解得方程的解是,就是说明方程的解是,因而代入方程就可求出的值,从而求出原方程,再解方程就可以 【变形1】当=_时,代数式与的值互为相反数【答案】解:根据题意得化简得:解得: 【解析】本题考查相反数的定义,从而推出相反
9、数的两个数之和是0,列出方程解答就可以了【例题5】【题干】如果,,那么【答案】方法一:解:由解得由解得那么:故填10方法二:+,得,【解析】本题解法可有两种方法,一种方法可直接求出,然后代入求值,另一方法可利用整体思想,由原方程直接求得,然后代入求值【变形1】如单项式是同类项,则n为( )【答案】解:单项式是同类项3n-5=2(n1),解得n=3故选C 【解析】同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点 【例题6】【题干】 解下列方程:(1) (2)【答案】(1)解:移项得:合并同类项得:(2)解:移项得:合并同类项得:系数化为1得:【解析】本题关键是通过周
10、长表示出长方形的宽,然后根据长方形面积这一等量关系列出方程.【变形1】下列各组方程中,解相同的方程是()A BC D【答案】解:A、把代,左右两边不等,因而不是方程的解,B、第一个方程是一元一次方程,只有一个解,第二个方程是二次方程,有两个解,因而两个方程的解也不同;C、这两个方程的解都是,因而两个方程的解相同D、把代入,左边右边,故不相同;故选C【解析】把的值代入方程检验是否能使方程左右两边相等,或先求出一个方程的解,再代入另一个方程检验是否能使方程左右两边相等,如果相等,则两个方程的解相同【例题7】【题干】大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余
11、2千克洗衣粉,则每个小箱子装洗衣粉多少千克?【答案】解:设每个小箱子装洗衣粉千克,由题意得:解得:答:每个小箱子装洗衣粉8。5千克,【解析】本题是一道列一元一次方程解答的实际问题,解答本题的关键是找到等量关系是:在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,也考查了列方程解应用题的步骤和关键【例题8】【题干】覃老师的年龄是他儿子年龄的4倍,20年后,他的年龄是他儿子年龄的2倍。问覃老师今年多少岁?【答案】方法一:解:设儿子今年岁,根据题意得:解得:(岁)答:覃老师今年40岁.方法二:设儿子今年岁,根据题意得:解得:(岁)答:覃老师今年40岁。【解析】本题用两种方法求出了覃老师的年龄,第一
12、种是直接求法,先设儿子今年的年龄为岁,后表示出覃老师今年的年龄,再用题给的已知条件:20年后,覃老师的年龄是他儿子年龄的2倍,进而列出方程求解;方法二利用的是现在的年龄差与20年后两人的年龄差不变,进而列出方程.两种方法各有巧妙之处。【例题9】【题干】汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒设听到回响时,汽车离山谷米,根据题意,列出方程为_【答案】解:设汽车离山谷米,则汽车离山谷距离的2倍即2,因为汽车的速度是72千米/时即20米/秒,则汽车前进的距离为:420米/秒,声音传播的距离为:
13、4340米/秒,根据等量关系列方程得:2+420=4340,【解析】首先理解题意找出题中存在的等量关系:汽车离山谷距离的2倍+汽车前进的距离=声音传播的距离,根据等量关系列方程即可四、课堂运用【基础】1. 下列方程变形正确的是()A BC D【答案】解:A、B、C、D、故选D【解析】主要考查了方程的变形,也就是解方程的基本步骤的分解方程变形常用的方法有:移项、合并同类项、去分母、去系数、去括号解此类题型要熟悉各项计算的方法2。 方程的解是()A B C D【答案】B 【解析】解:移项得:合并同类项得:,系数化1得:故选B3. 方程的解的相反数是()A B C D-3【答案】A 【解析】解:方程
14、移项得,系数化为1得,则:-2的相反数是2故选A4. 如果代数式与互为倒数,那么的值为()A B C D【答案】解:代数式与互为倒数解得:故选D【解析】本题考查了倒数的概念,根据题意列出方程可得出答案5。 下列两个方程的解相同的是( ) A. 方程和方程 B。 方程和方程C。 方程和方程 D。 方程和方程【答案】B【解析】本题考查的是方程的解,利用移项和合并同类项分别求出各个方程的解,相同的即为正确选项. 6。 代数式与互为相反数,则=_【答案】解:代数式与互为相反数解得:【解析】本题主要考查相反数的概念,已知相反数就是已知一个相等关系,可以利用方程解决7。 解下列方程 (1) (2) (3)
15、 (4)【答案】解:(1)移项得: (2)移项得:合并同类项得: 合并同类项得:系数化1得: 系数化1得:(3)移项得: (4)移项得:合并同类项得: 合并同类项得:系数化1得: 系数化1得:【解析】本题考查的是一元一次方程的解法,在移项时注意变号.【巩固】1. 方程的解是()A B C D【答案】B 【解析】解:移项得:系数化1得:故选B2。 方程:的解是()A B C D【答案】D【解析】解:移项得:,合并同类项得:故选D3. 当时,与的值互为倒数【答案】解:与的值互为倒数,=所以当时,与的值互为倒数【解析】本题主要考查了倒数的定义及一元一次方程的解法,属于基础题比较简单4。 根据下列条件
16、求的值: (1)25与的差是 (2)的与8的和是2【答案】(1)解:由题意得: (2)解:由题意得: 解得: 解得:【解析】根据题意列出方程进而求出解,注意移项时要变号.5. 一桶色拉油毛重8千克,从桶中取出一半油后,毛重4。5千克,桶中原有油多少千克?【答案】解:设桶中原有油千克,根据题意可列方程:解这个方程得:答:桶中原有油7千克【解析】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解6。 如图所示,天平的两个盘内分别盛有50g和45g的盐,问应该从盘A内拿出多少克盐放到盘B内,才能使两盘所盛盐的质量相等?【答案】解:设应该从盘A内拿出克盐放到盘B内,则
17、A盘中盐的质量为50,B盘中盐的质量为45+,由题意得:50=45+解得:=2.5答:应该从盘A内拿出2.5克盐放到盘B内【解析】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系列出方程式【拔高】1。 方程的解是()A2007 B2009 C4014 D4018【答案】解:原方程可以等价为:即:解之得:故选D【解析】本题主要考查用方程的等价变化法来解方程,原方程难求的值,把原来的一个分式分解成两个相减的分式,转化后把相反的两项相加为0,得到最简方程,则容易求解2. 某风景区的旅游路线示意图如图,B,D,C,E为风景点,F为两条路的交叉点,图中数据为相应两点间的路程(单位:千
18、米),一位同学从A处出发,以4千米/时的速度步行游览,每个景点的逗留时间均为0.5时(1)当他沿着路线ADCFEA游览回到A处时,共用了3.5时,求路程CF的长;(2)若此同学打算从A处出发后,步行速度与在景点的逗留时间保持不变,游览完B,C,E中的任意三个景点后,仍返回A处,使时间小于3。5时,请你为他设计一条步行路线并说明这样设计的理由(不考虑其他因素)【答案】解:(1)设CF的长为千米,依据题意得 1.6+1+1=2(3-20。5)解得=0.4,即CF的长为0。4千米(2)AEFCFEA设计理由:此时路程最短【解析】(1)据已知求出ADCFEA的总长,再减去EF,AE,AD,DC的长即可
19、;(2)要使设计线路的总长小于ADCFEA的总长即可此题主要考查线段的计算,看懂图、读懂题意是关键课程小结1. 方程中的合并同类项2。 移项的依据,在移项时注意变号3. 系数化1的方法和依据4。 解较简单的一元一次方程的一般步骤5。 用一元一次方程解决实际问题的一般步骤课后作业【基础】1. 若与互为倒数,则 【答案】解:的倒数是-3,与互为倒数解得:故填0【解析】根据互为倒数的两数之积为1可得出方程,解出即可本题的关键在于根据题意列出方程,属于比较简单的题目2. 若是同类项,则,【答案】解:是同类项可得解得: 【解析】主要考查同类项的概念,关键是同类项的指数相同将其转化为解一元一次方程的问题解
20、方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是变化成的形式3. 已知是方程的解,则=()A1 B-1 C2 D2【答案】解:根据题意得:,解得:故选A【解析】本题主要考查了方程的解的定义,根据方程的解的定义可以把求未知系数的问题转化为解方程的问题4. 下列各变形中,不正确的是() A。 B。 C。 D。 【答案】解:A、将3从等号左边移到右边,变为3,正确;B、将从右边移到左边,变为-,正确;C、将2从右边移到左边,变为2,正确,但将1从等号左边移到右边不变号,错误;D、将3从右边移到左边,变为-3,正确,将4从等号左边移到右边变为4,正确故选C【解析】本题主要考查
21、了一元一次方程的解法中的“移项”,其实质是等式的性质一,要注意,移项时要变号5. 中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3。06%,某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐),设到期后银行应向储户支付现金元,则所列方程正确的是()A5000=50003。06 B+500020%=5000(1+3.06%)C+50003.0620=50003.06 D+50003。06%20%=5000(1+3。06)【答案】解:设到期后银行应向储户支付现金元,根据等式:不扣除利息税的一年本息和=本金+利息=本金(1+
22、利率),列方程得+50003。06%20=5000(1+3.06%)故选D.【解析】首先理解题意找出题中存在的等量关系:不扣除利息税的一年本息和=本金+利息=本金(1+利率),根据此等式列方程即可6。 如图是某超市中“漂柔洗发水的价格标签,一售货员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价是_【答案】解:设原价是元,根据题意得:80=19。2解得:=24【解析】列方程解应用题的关键是正确找出题目中的相等关系,列出方程解答7. A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相
23、距50千米,则t的值为多少?【答案】解:(1)当甲,乙两车未相遇时,根据题意,得120t+80t=45050,解得:t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2。5【解析】如果甲、乙两车是在环形车道上行驶,则本题应分两种情况进行讨论:一、两车在相遇以前相距50千米,在这个过程中存在的相等关系是:甲的路程+乙的路程=(450-50)千米;二、两车相遇以后又相距50千米在这个过程中存在的相等关系是:甲的路程+乙的路程=450+50=500千米已知车的速度,以及时间就可以列代数式表示出路程,得到方程,从而求出时间t的值8. 如果用升桔子浓缩
24、水冲入升水制成桔子水,可供4人饮用,现在要为14人冲入同样“浓度”(这里,“浓度”=)的桔子水,需要用桔子浓缩汁多少升?【答案】解:设需要升桔子浓缩汁,根据题意得:解得:【解析】此题给的数量关系很多,首先要分清各量的关系,此题好像与溶液浓度有关,实际上没有联系,此题的等量关系是升桔子浓缩汁供4人饮用,与升桔子浓缩汁供14人饮用成比例【巩固】1。 方程的解是【答案】解:移项得:,故填8【解析】题目考查一元一次方程的解法,移项时注意符号的变化2. 如果式子的值等于2,则的值是()A2 B2 C3 D3【答案】解:根据题意得:解得:故选A 【解析】本题解决的关键是能够由已知联想到方程,从而求出的值3
25、. 定义,若,则的值是()A44328=64 B44+64=328 C328+44=64 D328+64=44 【答案】解:根据运算规则可知:可化为,移项可得:即故选C 【解析】根据题意可先表示出客车乘坐的人数,然后再加上校车的人数即是全校师生的人数. 4。 将下列方程中含有未知数的项移到方程的左边,将不含未知数的常数项移方程的右边:(1); (2)(3); (4) 【答案】解:(1)根据等式性质1,等式两边同时减去6,可得;(2)根据等式性质1,等式两边同时加,可得;(3)根据等式性质1,等式两边同时加(),可得;(4)根据等式性质1,等式两边同时加(),可得【解析】本题主要考查了等式的基本
26、性质等式性质1:等式的两边同时加上或减去同一个数或字母,等式仍成立5. 将下列方程中未知数的系数化为1:(1); (2); (3); (4)【答案】解:(1),得出,得,(2)得出,得,(3)得出,得,(4),得出,得【解析】本题考查的是解简单的一元一次方程,将系数化为1的过程,需要注意的是在系数化为1的过程中不要将负号漏掉6。 解下列方程:(1) (2)【答案】解:(1)去分母得:移项合并得:系数化1得:(2)移项合并得:系数化为1得: 【解析】(1)先去分母,然后移项合并、化系数为1可得出答案(2)先移项合并,然后化系数为1可得出答案7. 解方程: 【答案】解:原方程可化为:合并得:系数化
27、为1得:【解析】此题直接通过移项,合并同类项,系数化为1可求解8. “移项”、“合并、“系数化为1都是将一个比较复杂的一元一次方程如,变形成一个最简单的一元一次方程如你能将方程(未知已知,且)化成最简单的一元一次方程吗?【答案】解:能,移项得:合并得:,系数化为1得:【解析】本题考查了含有字母参数的一元一次方程的解法,其实质与一般的一元一次方程的解法一致,但要注意:系数不能为0【拔高】1。 下列求和的方法,相信你还未忘记:=请你据此知识解方程我解得的结果是【答案】解: 【解析】本题是信息题,由信息中得出,从而化简方程而求解2. 如图,6个正方形无缝拼接成一个大长方形,中间最小的一个正方形的面积为1,求这个大长方形的面积【答案】解:设AB=,则CM=,EF= ,大正方形的边长为FN=或NK=,由题意得:2+3=3+1,解得:,则大正方形的边长为32+1=7,面积为:77=49答:这个大长方形的面积为49【解析】此题主要考查了一元一次方程的应用,关键是根据图示表示出每个小正方形的边长,进而表示出大正方形的边长错题总结错题题号错题比例错题原因错题知识点小结课堂运用课后作业