资源描述
部编人教版八年级数学下册期中试卷(精编)
班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.将直线向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )
A. B. C. D.
2.将抛物线平移,得到抛物线,下列平移方式中,正确的是( )
A.先向左平移1个单位,再向上平移2个单位
B.先向左平移1个单位,再向下平移2个单位
C.先向右平移1个单位,再向上平移2个单位
D.先向右平移1个单位,再向下平移2个单位
3.若一个多边形的内角和为1080°,则这个多边形的边数为( )
A.6 B.7 C.8 D.9
4.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为( )
A.14 B.7 C.﹣2 D.2
5.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )
A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5
6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )
A.4 B.6 C.7 D.10
7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是( )
A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1
8.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是( )
A.AD+BC=AB B.与∠CBO互余的角有两个
C.∠AOB=90° D.点O是CD的中点
9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为( )
A.4 B.8 C.16 D.64
10.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )
A.75° B.80° C.85° D.90°
二、填空题(本大题共6小题,每小题3分,共18分)
1.若是关于的完全平方式,则__________.
2.已知x,y满足方程组,则的值为__________.
3.在数轴上表示实数a的点如图所示,化简+|a-2|的结果为____________.
4.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是________.
5.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则AEF的周长=______cm.
6.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是________.
三、解答题(本大题共6小题,共72分)
1.解方程:=1.
2.先化简,再求值:,其中.
3.已知:,,求的值.
4.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCF 的面积.
5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
6.某经销商从市场得知如下信息:
A品牌手表
B品牌手表
进价(元/块)
700
100
售价(元/块)
900
160
他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.
(1)试写出y与x之间的函数关系式;
(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;
(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.
参考答案
一、选择题(本大题共10小题,每题3分,共30分)
1、A
2、D
3、C
4、D
5、B
6、B
7、B
8、B
9、D
10、A
二、填空题(本大题共6小题,每小题3分,共18分)
1、7或-1
2、-15
3、3.
4、42
5、9
6、20
三、解答题(本大题共6小题,共72分)
1、x=1
2、2
3、7+4
4、(1)证明略;(2)证明略;(3)10.
5、(1)略(2)90°(3)AP=CE
6、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.
7 / 7
展开阅读全文