收藏 分销(赏)

九年级数学复习专题-------将军饮马专题1.doc

上传人:w****g 文档编号:2443192 上传时间:2024-05-30 格式:DOC 页数:7 大小:91.44KB
下载 相关 举报
九年级数学复习专题-------将军饮马专题1.doc_第1页
第1页 / 共7页
九年级数学复习专题-------将军饮马专题1.doc_第2页
第2页 / 共7页
九年级数学复习专题-------将军饮马专题1.doc_第3页
第3页 / 共7页
九年级数学复习专题-------将军饮马专题1.doc_第4页
第4页 / 共7页
九年级数学复习专题-------将军饮马专题1.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、专题一 利用轴对称解决两条线短之和最小值问题一:问题的背景古希腊一位将军要从A地出发到河边(如下图MN)去饮马,然后再回到驻地B。问怎样选择饮马地点,才能使路程最短?ABM C E NP A分析:在河边饮马的地点有许多处,把这些地点与A、B连接起来的两条线段的长度之和,就是从A地到饮马地点(P),再回到B地的路程之和。现在的问题是怎样找出使两条线段长度之和为最短的那个点来。具体操作:在图上过A点作河边MN的垂线,垂足为C,延长AC到A,A是A地对于河边MN的对称点;连结AB,交河边MN于P,那么P点就是题目所求的饮马地点。 原因:为什么饮马的地点选择在P点能使路程最短呢?因为 AC= AC,A

2、P与 BP的长度之和就是AP与BP的长度之和,即是AB的长度;而选择河边的任何其他点,如E,路程AE+EB= AE+BEAB,故P点就是符合要求的点。二:基本模型(K型) (等腰三角形) (正方形) (菱形) (等腰梯形) (抛物线) (圆)基础训练1、如图,正方形边长为8,M在CD上,且DM=2,N是AC上一动点,则ND+NM的最小值为多少?2、如图,菱形ABCD中,BAD=60,M是AB的中点,P是对角线AC上的一个动点,若AB长是3,则PM+PB的最小值为多少?3、如图,已知点P是边长为2的正三角形ABC的中线AD上的动点,E是AC边的中点,则PC+PE的最小值是多少? 4、如图,在等腰

3、直角三角形ABC中,AC=BC=2,ACB=90,D是BC中点,E是AB边上一动点,则EC+ED的最小值是多少? 5、如图,正三角形ABC的边长为2,M为BC中点,P为AC上一动点,则PB+PM的最小值为多少? 6、等腰直角三角形ABC的直角边长为2,E是斜边AB的中点,P是AC边上的一动点,则PB+PE的最小值为_。7、在 三角形 ABC中,点D,E分别为AB,AC边上的中点,BC=6,BC边上的高为4,若点P为BC边上一个动点,则三角形PDE周长的最小值是多少? 8、 如图,在矩形ABCD中,AD=3,CAB=30、点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+PQ 的最小值是多

4、少? 提高训练1、如图,在直角三角形ABC中、ACB=90,AC=6,BC=8,AD为BAC的平分线。若P、Q分别是AD和AC上的动点,则PC+PQ的最小值为_ (2个动点) 2、如图,在锐角ABC中,AB=42,BAC=45.BAC的平分线交BC于点D、M、N分别是AD和AB上的动点,则BM+MN的最小值是_(2个动点)ABCDNM 3、如图,ABC中,AB=4,BAC=30,若在AC、AB上各取一点M、N使BM+MN的值最小,则这个最小值为 _ 4、如图,AOB=45,P是AOB内一点,PO=10,点Q,R分别是OA,OB上的动点(均不同于点O),则三角形PQR周长的最小值为_(2个动点)

5、5、如图,在等腰三角形ABC中,ABC=120,点P是底边AC上一动点,M,N为AB,BC中点,若PM+PN的最小值为2,则三角形ABC的腰长为_ 6、如图,在正方形ABCD中,AB=4,E是BC边的中点,F是CD边上的一点,且DF=1。若M,N分别是线段AD,AE上的动点,则MN+MF的最小值为_ (2个动点) 7、如图,在矩形ABCD中,AD=6,AEBD,垂足为E,ED=3BE,点P,Q分别在BD,AD上,则AP+PQ的最小值为_ (2个动点) 8、如图,正方形ABCD的边长是4,DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值为_。(2个动点)9、如

6、图,AB,CD是半径为5的O的两条弦,AB=8,CD=6,MN是直径,ABMN于E,CDMN于F,点P为EF上任意一点,则PA+PC的最小值为_ 10、如图,MN是半径为1的O直径,点A在O上,AMN=30,点B为劣弧AN的中点,点P是直径MN上一动点,则PA+PB的最小值为_ 经验总结:在求两条线段之和的最小值时,我们经常“转化”河同侧的一个点到河的另一侧,从而使一条线段同时“移”到了河的异侧,我们称之为“转点移线”,再利用两点之间线段最短解决问题。上面的练习中,主要包括了四类大的具体操作类型:1、原图中直接转化点的。2、需要补成特殊图形转化点的。3、做一个点关于“河”的对称点。4、利用角平分线构造全等转化点的。在这里,我们用到的知识点有如下几个:、两点之间线段最短。、垂线段最短。、勾股定理。、相似三角形。、三角函数。7

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服