1、1、合理分类和准确分步、合理分类和准确分步2 2、特殊元素和特殊位置问题、特殊元素和特殊位置问题、特殊元素和特殊位置问题、特殊元素和特殊位置问题3 3、相邻相间问题、相邻相间问题、相邻相间问题、相邻相间问题4、定序问题、定序问题5、分房问题、分房问题6、环排、环排、多排问题多排问题多排问题多排问题1111、小集团问题、小集团问题、小集团问题、小集团问题9、先选后排问题、先选后排问题8 8、平均分组问题、平均分组问题10、构造模型策略、构造模型策略7、枚举法、枚举法12、其它特殊方法、其它特殊方法排列组合应用题解法综述排列组合应用题解法综述(目录)(目录)特殊元素(或特殊位置)优先安排特殊元素(
2、或特殊位置)优先安排例例1.1.将将5 5列列车车停停在在5 5条条不不同同的的轨轨道道上上,其其中中a a列列车车不不停停在在第第一一轨轨道道上上,b b列列车车不不停停在在第第二二轨轨道道上上,那么不同的停放方法有(那么不同的停放方法有()(A A)120120种种 (B B)9696种种 (C C)7878种种 (D D)7272种种 在由数字在由数字0,1,2,3,4,5所组成所组成的没有重复数字的四位数中,不能被的没有重复数字的四位数中,不能被整除的数共有整除的数共有_个个 练习1例例2 2、用、用、组成没有重复数字的八位数,要求与相组成没有重复数字的八位数,要求与相邻,与相邻,与相
3、邻,而与不邻,与相邻,与相邻,而与不相邻,这样的八位数共有相邻,这样的八位数共有_个(用数个(用数字作答)字作答)回目录回目录相邻与不相邻问题相邻与不相邻问题“相邻相邻”用用“捆绑捆绑”,“不邻不邻”就就“插空插空”例例3 3、七人排成一排,甲、乙两人必须七人排成一排,甲、乙两人必须相邻,且甲、乙都不与丙相邻,则不相邻,且甲、乙都不与丙相邻,则不同的排法有(同的排法有()种)种(A A)960960种种 (B B)840840种种 (C C)720720种种 (D D)600600种种回目录回目录某人射击某人射击8 8枪,命中枪,命中4 4枪,枪,4 4枪命中恰好有枪命中恰好有3 3枪连在一起
4、的情形的不同种数为(枪连在一起的情形的不同种数为()练习220回目录回目录例例4 4、有、有4 4名男生,名男生,3 3名女生。名女生。3 3名女生高矮名女生高矮互不等,将互不等,将7 7名学生排成一行,要求从左到名学生排成一行,要求从左到右,女生从矮到高排列,有多少种排法?右,女生从矮到高排列,有多少种排法?顺序固定问题用顺序固定问题用“除法除法”对于某几个元素顺序一定的排列问对于某几个元素顺序一定的排列问题,可先将这几个元素与其它元素一同题,可先将这几个元素与其它元素一同进行排列,然后用总的排列数除以这几进行排列,然后用总的排列数除以这几个元素的全排列数个元素的全排列数.回目录回目录住店法
5、住店法解决解决“允许重复排列问题允许重复排列问题”要注意区分两类元素:要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复一类元素可以重复,另一类不能重复,把不能重复的元素看作的元素看作“客客”,能重复的元素看作,能重复的元素看作“店店”,再利,再利用乘法原理直接求解。用乘法原理直接求解。例例5、七名学生争夺五项冠军,每项冠军、七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种只能由一人获得,获得冠军的可能的种数有(数有()A.B.C D.回目录回目录A 某某8 8层大楼一楼电梯上来层大楼一楼电梯上来8 8名乘客人名乘客人,他们他们 到各自的一层下电梯到各自的一层下电
6、梯,下电梯的方法下电梯的方法()练习3回目录回目录环排问题线排策略环排问题线排策略例例6.56.5人围桌而坐人围桌而坐,共有多少种坐法共有多少种坐法?解:解:围桌而坐与坐成一排的不同点在于,坐成围桌而坐与坐成一排的不同点在于,坐成 圆形没有首尾之分,所以固定一人圆形没有首尾之分,所以固定一人A A并从并从 此位置把圆形展成直线其余此位置把圆形展成直线其余4 4人共有人共有_ 种排法即种排法即 A AB BC CE ED DD DA AA AB BC CE E(5-1)5-1)!一般地一般地,n,n个不同元素作圆形排个不同元素作圆形排列列,共有共有(n-1)!(n-1)!种排法种排法.如果从如果
7、从n n个不同元素中取出个不同元素中取出m m个元素作个元素作圆形排列共有圆形排列共有回目录回目录练习46 6颗颜色不同的钻石,可穿成几种钻石圈?颗颜色不同的钻石,可穿成几种钻石圈?120多排问题直排策略多排问题直排策略例例7.87.8人排成前后两排人排成前后两排,每排每排4 4人人,其中甲乙在其中甲乙在 前排前排,丁在后排丁在后排,共有多少排法共有多少排法解解:8人排前后两排人排前后两排,相当于相当于8人坐人坐8把椅子把椅子,可以可以 把椅子排成一排把椅子排成一排.先在前先在前4个位置排甲乙两个位置排甲乙两个特殊元素有个特殊元素有_种种,再排后再排后4个位置上的个位置上的特殊元素有特殊元素有
8、_种种,其余的其余的5人在人在5个位置个位置上任意排列有上任意排列有_种种,则共有则共有_种种.前排后排后排一般地一般地,元素分成多排的排列问题元素分成多排的排列问题,可归结为一排考虑可归结为一排考虑,再分段研究再分段研究.回目录回目录小集团问题先整体局部策略小集团问题先整体局部策略例例8.8.用用1,2,3,4,51,2,3,4,5组成没有重复数字的五位数组成没有重复数字的五位数 其中恰有两个偶数夹其中恰有两个偶数夹在在1,1,之间之间,这样的这样的 五位数有多少个?五位数有多少个?31524小集团小集团小集团排列问题中,先整体后局小集团排列问题中,先整体后局部,再结合其它策略进行处理。部,
9、再结合其它策略进行处理。回目录回目录.计划展出计划展出10幅不同的画幅不同的画,其中其中1幅水彩画幅水彩画,幅油画幅油画,幅国画幅国画,排成一行陈列排成一行陈列,要求同一要求同一品种的必须连在一起,并且水彩画不在两品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为端,那么共有陈列方式的种数为_2.5男生和女生站成一排照像男生和女生站成一排照像,男生相邻男生相邻,女女生也相邻的排法有生也相邻的排法有_种种回目录回目录练习5元素相同问题隔板策略元素相同问题隔板策略应用背景:相同元素的名额分配问题应用背景:相同元素的名额分配问题 不定方程的正整数解问题不定方程的正整数解问题隔板法的使用
10、特征:隔板法的使用特征:相同的元素分成若干部分,每部分至少一个相同的元素分成若干部分,每部分至少一个元素相同问题隔板策略例例9.有有1010个运动员名额,在分给个运动员名额,在分给7 7个班,每个班,每班至少一个班至少一个,有多少种分配方案?有多少种分配方案?解:因为解:因为10个名额没有差别,把它们排成个名额没有差别,把它们排成一排。相邻名额之间形成个空隙。一排。相邻名额之间形成个空隙。在个空档中选个位置插个隔板,在个空档中选个位置插个隔板,可把名额分成份,对应地分给个可把名额分成份,对应地分给个班级,每一种插板方法对应一种分法班级,每一种插板方法对应一种分法共有共有_种分法。种分法。一班二
11、班三班四班五班六班七班将将n n个相同的元素分成个相同的元素分成m m份(份(n n,m m为正整数)为正整数),每份至少一个元素每份至少一个元素,可以用可以用m-1m-1块隔板,插入块隔板,插入n n个元素排成一排的个元素排成一排的n-1n-1个空隙中,所有分法数个空隙中,所有分法数为为回目录回目录练习练习6 6(1 1)将)将1010个学生干部的培训指标分配给个学生干部的培训指标分配给7 7个不同个不同的班级,每班至少分到一个名额,不同的分配方的班级,每班至少分到一个名额,不同的分配方案共有案共有 ()种。)种。(2)不定方程)不定方程 的正整数解的正整数解共有(共有()组)组回目录回目录
12、(3 3)高二年级高二年级8 8个班个班,组织一个组织一个1212个人的年级学生分会个人的年级学生分会,每班要求至少每班要求至少1 1人人,名额分配方案有多少种名额分配方案有多少种?平均分组问题除法策略平均分组问题除法策略例10.6本不同的书平均分成本不同的书平均分成3堆堆,每堆每堆2本共有本共有 多少分法?多少分法?解解:分三步取书得分三步取书得 种方法种方法,但这里出现但这里出现 重复计数的现象重复计数的现象,不妨记不妨记6本书为本书为ABCDEF 若第一步取若第一步取AB,第二步取第二步取CD,第三步取第三步取EF 该分法记为该分法记为(AB,CD,EF),则则 中还有中还有 (AB,E
13、F,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有共有 种取法种取法,而而 这些分法仅是这些分法仅是(AB,CD,EF)一种分法一种分法,故共故共 有有 种分法。种分法。平均分成的组平均分成的组,不管它们的顺序如何不管它们的顺序如何,都是一都是一种情况种情况,所以分组后要一定要除以所以分组后要一定要除以 (n为均为均分的组数分的组数)避免重复计数。避免重复计数。回目录回目录1 将将13个球队分成个球队分成3组组,一组一组5个队个队,其它两组其它两组4 个队个队,有多少分法?有多少分法?2.10名学生分成名学生分成3组组,其中一组其中一组4人人,
14、另两组另两组3人人 但正副班长不能分在同一组但正副班长不能分在同一组,有多少种不同有多少种不同 的分组方法的分组方法(1540)3.3.某校高二年级共有六个班级,现从外地转某校高二年级共有六个班级,现从外地转 入入4 4名学生,要安排到该年级的两个班级且每名学生,要安排到该年级的两个班级且每班安排班安排2 2名,则不同的安排方案种数为名,则不同的安排方案种数为_ 回目录回目录练习练习7 7构造模型策略构造模型策略例例.马路上有编号为马路上有编号为1,2,3,4,5,6,7,8,91,2,3,4,5,6,7,8,9的的 九只路灯九只路灯,现要关掉其中的现要关掉其中的3 3盏盏,但不能关但不能关
15、掉相邻的掉相邻的2 2盏或盏或3 3盏盏,也不能关掉两端的也不能关掉两端的2 2 盏盏,求满足条件的关灯方法有多少种?求满足条件的关灯方法有多少种?解:把此问题当作一个排队模型在解:把此问题当作一个排队模型在6 6盏盏 亮灯的亮灯的5 5个空隙中插入个空隙中插入3 3个不亮的灯个不亮的灯 有有_ _ 种种一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决回目录回目录练习8某排共有某排共有1010个座位,若个座位,若4 4人就坐,每人左右人就坐,每人左右两边都有空位,那么不同的坐法有多少种?两边都有空位,那么不同的坐法有多少种?120回目录
16、回目录八八.排列组合混合问题先选后排策略排列组合混合问题先选后排策略例例.有有5 5个不同的小球个不同的小球,装入装入4 4个不同的盒内个不同的盒内,每盒至少装一个球每盒至少装一个球,共有多少不同的装共有多少不同的装 法法.解解:第一步从第一步从5 5个球中选出个球中选出2 2个组成复合元共个组成复合元共 有有_种方法种方法.再把再把5 5个元素个元素(包含一个复合包含一个复合 元素元素)装入装入4 4个不同的盒内有个不同的盒内有_种方法种方法.根据分步计数原理装球的方法共有根据分步计数原理装球的方法共有_解决排列组合混合问题解决排列组合混合问题,先选后排是最基本先选后排是最基本的指导思想的指
17、导思想.此法与此法与相邻元素捆绑策略相似吗?回目录回目录实验法(穷举法)实验法(穷举法)题中附加条件增多,直接解决困难时,用实验逐题中附加条件增多,直接解决困难时,用实验逐步寻求规律有时也是行之有效的方法。步寻求规律有时也是行之有效的方法。例例 将数字将数字1 1,2 2,3 3,4 4填入标号为填入标号为1 1,2 2,3 3,4 4的的四个方格内,每个方格填四个方格内,每个方格填1 1个,则每个方格的标号与个,则每个方格的标号与所填的数字均不相同的填法种数有(所填的数字均不相同的填法种数有()A.6 B.9 C.11 D.23分析:此题考查排列的定义,由于附加条件较多,解法较为困难,分析:
18、此题考查排列的定义,由于附加条件较多,解法较为困难,可用实验法逐步解决。可用实验法逐步解决。第一方格内可填第一方格内可填2或或3或或4。如填。如填2,则第二方格中内可填,则第二方格中内可填1或或3或或4。若第二方格内填若第二方格内填1,则第三方格只能填,则第三方格只能填4,第四方格应填,第四方格应填3。若第二方格内填若第二方格内填3,则第三方格只能填,则第三方格只能填4,第四方格应填,第四方格应填1。同理,若第二方格内填同理,若第二方格内填4,则第三方格只能填,则第三方格只能填1,第四方格应,第四方格应填填3。因而,第一格填。因而,第一格填2有有3种方法。种方法。不难得到,当第一格填不难得到,
19、当第一格填3或或4时也各有时也各有3种,所以共有种,所以共有9种。种。回目录回目录实际操作穷举策略实际操作穷举策略例例.设有编号设有编号1,2,3,4,51,2,3,4,5的五个球和编号的五个球和编号1,21,2 3,4,5 3,4,5的五个盒子的五个盒子,现将现将5 5个球投入这五个球投入这五 个盒子内个盒子内,要求每个盒子放一个球,并且要求每个盒子放一个球,并且 恰好有两个球的编号与盒子的编号相同恰好有两个球的编号与盒子的编号相同,.,.有多少投法?有多少投法?解:从从5个球中取出个球中取出2个与盒子对号有个与盒子对号有_种种 还剩下还剩下3球球3盒序号不能对应,盒序号不能对应,利用实际操
20、作法,如果剩下操作法,如果剩下3,4,5号球号球,3,4,5号盒号盒3号球装号球装4号盒时,则号盒时,则4,5号球有只有号球有只有1种种装法装法3 3号盒号盒4 4号盒号盒5 5号盒号盒345回目录回目录实际操作穷举策略实际操作穷举策略例例.设有编号设有编号1,2,3,4,51,2,3,4,5的五个球和编号的五个球和编号1,21,2 3,4,5 3,4,5的五个盒子的五个盒子,现将现将5 5个球投入这五个球投入这五 个盒子内个盒子内,要求每个盒子放一个球,并且要求每个盒子放一个球,并且 恰好有两个球的编号与盒子的编号相同恰好有两个球的编号与盒子的编号相同,.,.有多少投法?有多少投法?解:从从
21、5个球中取出个球中取出2个与盒子对号有个与盒子对号有_种种 还剩下还剩下3球球3盒序号不能对应,盒序号不能对应,利用实际操作法,如果剩下操作法,如果剩下3,4,5号球号球,3,4,5号盒号盒3号球装号球装4号盒时,则号盒时,则4,5号球有只有号球有只有1种种装法装法,同理同理3号球装号球装5号盒时号盒时,4,5号球有也号球有也只有只有1种装法种装法,由分步计数原理有由分步计数原理有2 种种 回目录回目录练练 习习:(不对号入座问题):(不对号入座问题)(1 1)()(20042004湖北)将标号为湖北)将标号为1 1,2 2,3 3,1010的的1010个球放入标号为个球放入标号为1 1,2
22、2,3 3,1010的的1010个盒子中,个盒子中,每个盒内放一个球,恰好有每个盒内放一个球,恰好有3 3个球的标号与其所在盒子个球的标号与其所在盒子的标号不一致的放入方法有的标号不一致的放入方法有_种种(2 2)编号为)编号为1 1、2 2、3 3、4 4、5 5的五个球放入编号为的五个球放入编号为1 1、2 2、3 3、4 4、5 5的五个盒子里,至多有的五个盒子里,至多有2 2个对号入座的个对号入座的情形有情形有_种种109直接法:直接法:间接法:间接法:回目录回目录注意区别注意区别“恰好恰好”与与“至少至少”从从6 6双不同颜色的手套中任取双不同颜色的手套中任取4 4只,其中恰好有一双
23、只,其中恰好有一双同色的手套的不同取法共有(同色的手套的不同取法共有()(A)480(A)480种(种(B B)240240种种 (C C)180180种种 (D D)120120种种小结:小结:“恰好有一个恰好有一个”是是“只有一个只有一个”的意思。的意思。“至少有一个至少有一个”则是则是“有一个或一个以上有一个或一个以上”,可,可用分类讨论法求解,它也是用分类讨论法求解,它也是“没有一个没有一个”的反面,的反面,故可用故可用“排除法排除法”。解:回目录回目录练习练习 从从6双不同颜色的手套中任取双不同颜色的手套中任取4只,其中至只,其中至少有一双同色手套的不同取法共有少有一双同色手套的不同
24、取法共有_种种解:解:回目录回目录对于条件比较复杂的排列组合问题,不易用对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状公式进行运算,往往利用穷举法或画出树状图会收到意想不到的结果图会收到意想不到的结果练习题1.1.同一寝室同一寝室4 4人人,每人写一张贺年卡集中起来每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张然后每人各拿一张别人的贺年卡,则四张 贺年卡不同的分配方式有多少种?贺年卡不同的分配方式有多少种?(9)2.2.给图中区域涂色给图中区域涂色,要求相邻区要求相邻区 域不同色域不同色,现有现有4 4种可选颜色种可选颜色,则则 不同的着色方法有不同的着色方法有_种种213457272