1、北京航空航天大学学位论文论文题目:风扇管道消声设计及水声材料的声管测量技术研究摘 要论文所进行的研究工作包括航空声学的风扇管道消声设计及水声材料声管测量技术研究两个部分。在风扇管道壁面使用消声声衬来降低风扇噪声是目前商业飞机降低噪声的主要途径之一,因此声衬的优化设计至关重要。模态匹配法是上个世纪八十年代发展并得到广泛应用的一种便捷的管道声学消声计算方法,八五期间北京航空航天大学在“民机噪声和声疲劳研究”项目的支持下发展了模态匹配法计算程序10,但后来由于没有经费支持和实际工程项目的背景需求的支持未进一步进行验证校核,并实际应用。本部分研究是根据APTD研究计划关于GF90消声设计的研究工作要求
2、进行的,对模态匹配法原程序进行验证校核和更改完善,修正了原程序中的错误,解决了求解特征值问题的跳根和计算精度问题,通过与其它计算方法的对比校核了计算程序,发展了应用该程序进行声衬优化设计的设计方法,并应用于两种转子声衬的设计优化。水声材料声管测量实验研究是北航流体与声学工程实验室十五211工程水声声管建设工作的一部分。水声材料的许多声学特性可以通过对其复反射系数和透射系数的测量计算得到,使用声管方法尽管只能测量正入射条件下的声学参数,但是由于它测试条件易于控制,实施较方便,成本较低,与其它方法比较可以更精确、标准地进行测试,因此成为一种常用的复反射系数和透射系数测量设备。本研究工作是建设并调试
3、一套工作频率范围为500Hz15kHz的中频声管实验设备,内容包括装置中发射换能器、测量水听器、信号调理、信号采集及数据分析系统的设备的设计,测量功能分析和基本实验设备的调试;进行了连续声测量功能的调试,通过空气软背衬反射系数的测量初步验证了设备的功能和测量方法;进行了消声尖劈的吸声系数测量,得到了合理的测量结果。通过完成基本测量实验了解了声管测量的基本方法和原则,积累了经验。关键词:模态匹配,环绕积分,优化设计,声管,传递函数法,脉冲法Title of Thesis: The Noise Elimination design in Fan-tube and the Research of W
4、ater-tube ExperimentationSpeciality Major: engineering of underwater acousticsDate of Graduate: Mar,2005Author: WANG YiSupervisor: WANG TongqingABSTRACTThe thesis includes two parts: a study on noise suppression of ducted fan in aeroacoustics and the research of instrumentation technology in underwa
5、ter acoustic tube.It is one of the major method in commerce airplane at this day to eliminate the noise in ducted fan with the anechoic liner, so it is very important to optimize the design of anechoic liner. Mode-matching method is a convenient calculation method, which developed in eighty years la
6、st century and widely used. BUAA has developed a program of mode-matching method with the support of “research on civil aviation noise control and acoustic fatigue” project. But it has not validated in detail because of no outlay support. Based on the project of APTD, the present work has improved a
7、nd validated the program and has used it in optimize liner design in a two type of ducted fan.In hydro-acoustics experimentation, many acoustic characteristic of acoustic material in water can be calculated by complex reflectance and complex penetrate coefficient. Underwater acoustic tube is widely
8、used in the measurement of complex reflectance and complex penetrate coefficient, for the easement could be easily controlled and in low cost. The thesis involves the following works: The construction of underwater acoustic tubes, its operating frequency is from 500Hz to 15kHz. The equipment include
9、s a water tube and its accessories, the data acquisition and signal processing system. A basic underwater acoustic measurement and data acquisition system have been developed, and through the experiment the preliminary experience about underwater acoustic instrumentation was obtained.Keywords: mode-
10、matching method,winding number integral method,optimize design, water-filled tubes,transfer function method,pulse-tube method 2第一章引言11.1 风扇管道消声计算的工程背景11.2 风扇管道消声计算的发展历史21.3 水声声管实验研究的工程背景31.4 水声声管实验研究的发展历史41.5 本文工作简介5第二章管道消声的模态匹配法优化设计72.1 前言72.2 物理模型及计算方法72.3 程序的完善与改进172.4 程序的验证与校核192.3.1声源为J-69轴流跨音转
11、子的算例192.3.2声源为GF90轴流跨音转子的算例212.3.3对J-69声源结合声衬结构参数的变化使用边界元方法进行校核232.4 优化设计23241考虑阻抗变化的优化设计24242结合声衬结构参数的优化设计302.5 小结44第三章 水声声管的测量和实验技术453.1 工程背景453.2 水声声管测量的基础453.3 测量方法463.3.1双水听器传递函数法463.3.2脉冲法483.4 测量中需注意的问题50第四章 水声声管的的建设和研究534.1 水声声管的建设和研究534.2数据采集分析系统584.3发射换能器的频响曲线测量594.4声管建设总结63第五章 双水听器传递函数法实验
12、研究655.1 平面波垂直入射时的反射和透射655.2 空气软背衬测量665.3 吸声橡胶尖劈测量705.4 小结72结论74附录A:推广的特征函数正交理论75参考文献81硕士期间被录用的论文84致谢85第一章 引言1.1 风扇管道消声计算的工程背景随着民用飞机的日趋普及,航空噪声问题日益引起人们的普遍关注,航空噪声已成为噪声污染的重要来源,因此,为了防止航空噪声危害旅客和城市居民的身体健康,美国FAA 以及国际民航组织相继制定了FAR36部及国际民航公约第十六号公约,对飞机噪声作了严格的规定,指出所有进入美国及国际民航组织缔约国的飞机必须遵守该规定的噪声指标要求。随着我国航空工业的发展,特别
13、是进入90年代以来,干线飞机和新型支线客机的引进和研制工作开始实施,无论从独立研制还是从联合研制都必须开展对飞机进行声学设计的研究,如何使其符合噪声适航条例和满足座舱的噪声水平成为重要问题,降低噪声同时也是为了适应军机提高抗声疲劳及声隐身性能的需要。因此如何降低飞机的主要噪声源发动机噪声成为民机及军机研制中的一个关键技术问题。就涡轮风扇发动机而言,它的主要噪声包括风扇/压气机噪声、涡轮噪声、排气噪声和燃烧噪声。其中风扇/压气机噪声和排气噪声在发动机总噪声级中占有突出的比例。随着民用飞机广泛采用的高涵道比涡轮风扇发动机的涵道比越来越高,相应的发动机的排气速度不断降低,而风扇尺寸以及风扇的切向速度
14、逐渐增加,故与风扇/压气机噪声相比,排气噪声问题相对变小,发动机的主要声源已不再是喷流噪声,而集中在风扇压气机部分。而降低风扇/压气机噪声有两种方法:从声源入手和从传播途径入手。从声源入手就是从研究风扇/压气机噪声的产生机制入手,建立各种噪声预测模型,从而找出合适的方法来降低风扇/压气机噪声。这种方法针对噪声产生的机理进行研究,目的性强,效果也显著,但是要达到模拟风扇/压气机真实工作条件的预测模型是非常困难的,模型求解的计算量也很大,因此目前降低声源的噪声是有限的。通过控制噪声的传播途径降低风扇的辐射噪声是降低风扇噪声的另一个重要途径,因为发动机产生的噪声是通过进、排气道以及短舱向外传播的,如
15、果能在其传播途径上设置吸声材料,就能够大大降低向外传播的噪声。因此如何合理设计声衬从而达到最大吸声效果,以及如何准确预测声衬的吸声效果就成为风扇降噪研究的重要课题。上世纪八十年代末期在航空工业总公司“民机噪声控制与声疲劳研究(ANCF)”系统工程项目的支持下开始尝试建立自己的航空声学设计平台。 但这种有组织和一定规模的研究项目随着国家民用飞机发展计划不断改变而随之消失。 然而自从那时以来,北航流体与声学实验室一直坚持进行这方面工作。并在声衬设计与实验上有过多次尝试,积累了丰富的经验。曾设计、制造过三批声衬,进行过4次实验。第一次、第二次实验都是使用了有机玻璃机匣的声衬,这两次试验都是在中航总的
16、“民机噪声与声疲劳研究”系统工程项目支持下完成的;第三次实验是九五期间在国防科工委“胶接蜂窝夹层结构制造工艺研究”项目支持下进行的,使用了航空工程产品使用的铝胶接蜂窝夹层材料制造;第四次实验是在640所的民机预研项目支持下进行的。在以上设计与实验研究工作基础上2003年北航流体与声学实验室承担了APTD计划中GF90风扇管道声衬设计与优化的重任,模态匹配方法作为一种快捷的管道声学消声计算方法被得到成功应用。1.2 风扇管道消声计算的发展历史对消声短舱流动管道降噪机理研究的迫切需求是从五、六十年代起,航空界开始重视发动机敷设声衬的有流动的软壁管道声传播的理论和实验研究。但实际风扇流动管道的声学问
17、题涉及管道内复杂的流场、声场以及它们的相互作用,它们与管道的相互作用以及管壁材料的物理性质等诸多因素的影响;而管口的流场和声场更为复杂,因此至今为止风扇流动管道声传播与管口声辐射的数值模拟仍然是流体力学和声学中的一个困难问题。上个世纪60年代中期至70年代中期由于涡轮风扇发动机开始在民用飞机上的广泛应用,国外开始研究和发展航空发动机声衬声学设计技术。这个期间的工作做了大量简化:主要是以无限长管道为基本物理模型,假定声衬均匀分布在无限长管中,并重点考虑对于给定模态波如何确定最优管道声阻抗问题,和如何确定声衬管道的特征值用以计算消声量的问题。特征值计算问题是当时讨论的重点问题之一,而Newton-
18、Raphson方法成为当时普遍认为可以接受的方法1-3。但使用Newton-Raphson方法该如何选择初始值,如何避免特征值跳跃等问题没有得到解决。由于当时的计算机运算能力以及对问题本身理解的限制,设计消声短舱的声学模型是相当粗糙的。70年代中期后,模态匹配方法(Mode-Matching)的提出成为当时最有影响的工作4。其主要思想是将各段声衬中的声场用无限长管道声模态的迭加形式来描述,除了截止模态,其它模态波都可以传播,周向模态满足周期性条件,而径向模态满足法向边界条件,不同阻抗边界条件的声衬段之间的模态向量用声压连续和质点速度连续的条件来匹配;端口的反射及声源的入射模态向量用计算的方法或
19、试验的方法得到。按照这个模型,不仅可以考虑多段声衬的设计,同时只要知道模态(Mode)反射系数,还可以计算有限长管的影响。然而,模态匹配方法有它自身难以克服的缺点。比如,如何从实验或者理论上获得模态反射系数是一个极其困难的问题。但由于其理论的指导作用,多段声衬的设计概念已经开始在当时得到了应用。由此,其声学设计水平与早期的工作相比迈上了一个新的台阶。随着计算机技术和数值技术的发展九十年代基于边界元和有限元方法的管道声学数值方法得到发展,这些方法都是在线性声学范围内基于求解带有管道流动的对流波动方程的定解问题,适用于更广泛的管道边界形状和边界条件;使用有限元和边界元方不再需要求解管口反射系数,因
20、为它们将管道内的声场与辐射场同时进行求解。在这个期间,为解决传统的气动声学所面临的一些困难问题,计算气动声学方法CAA应运而生。随着一些公认的CAA高精度计算格式的问世,实际上已为下一步解决短舱声传播的精确数值模拟奠定了基础。1.3 水声声管实验研究的工程背景水声学是声学的一个分支。它主要研究声波在水下的产生、辐射、传播和接收的理论。用以解决与水下目标探测、识别以及信息传输过程有关的声学问题。因为声波是人类迄今为止已知唯一能在水中远距离传播的能量形式,而海洋的利用和开发已为各发达国家确定为优先发展项目。1994年11月联合国海洋法公约正式生效;1995年,我国人大通过了中国海洋21世纪议程,1
21、996年海洋高科技作为一个领域列入国家863高科技发展计划。因此可以预见,水声学的发展将面临更强大的需求牵引,从而获得更深、更广的进展。水声学最初主要是为军事服务的。而在所有军用舰艇中,号称“海洋幽灵”的潜艇可以说是最具隐蔽性和突然性的。占地球面积70以上的海洋为潜艇作战、生存提供了极为有利的自然环境。因此世界各主要海军国家都把潜艇力量放在十分重要的位置,对其发展做了相当大的投入。有矛必有盾。潜艇技术的发展必然促使反潜技术的发展。而在反潜侦察中,利用声纳探测是最主要的方式。对付声纳,潜艇可用敷设吸声材料等手段达到隐身效果。而敷设吸声材料的技术在潜艇声隐身方面所起的重要作用已为世界各国所认同,因
22、此各国均投入大量的人力、物力进行水声吸声材料的机理研究和工程应用工作。目标敷设吸声材料的隐身效果取决于吸声材料的声学性能,应用表面吸声材料的声学参数并通过一定数值模拟方法可以计算敷设消声材料的目标的回声减少效果。因此消声材料样品声学性能测量是水下消声材料研究的重要手段。水声材料的声学性能测量一般可以应用声管和自由场水域(包括消声水池)。 两类各有优势:空间水域 (水池、湖、海) ,可模拟水声材料实际应用中的多方向入射、各种结构、较大的受声面积等等;声管,虽然尺度小,且只能法向入射,但测试条件环境易于控制,实施较方便,成本较低,可以更精确、标准地进行测试。各国在水声材料测试上除非必要,主要还是采
23、用声管测试方法,并对声管测量方法建立了标准。随着声呐的探测频率越来越低,其测试技术也在向着低频率范围内展伸,而要实现消声水池内的低频测量的难度较大,于是水声声管对吸声材料的实验研究也就显得越来越重要了。1.4 水声声管实验研究的发展历史水声学的迅速发展需要性能良好的大量水声设备和材料。水声吸声材料的研究以德国最早。早在1939年,德国哥廷根大学物理系就开展了水下吸声材料的研究。他们先后研究了以粘滞液体和各种橡胶作为吸声材料。目前西欧和美国的一些水声吸声材料已经基本定型,作为商品出售,其都是橡胶制品5。而对水声材料的测量主要集中于两项性能指标,一为复反射系数,二为透射系数。水声材料的许多声学特性
24、都可以通过对这两项参数的测量得到。尤其是随着水声隐身技术和声纳技术的发展,人们对材料的消声和去耦性能也越来越感兴趣。而这两项指标,根据C.Audoly的论述,也可以由复反射系数和透射系数计算得到6。因此在声管中对有限尺寸的大面积材料样品的复反射系数和透射系数的测量是十分有意义的。水声声管的测量方法经历了由脉冲法发展到驻波管法(单频),发展到双水听器传递函数法,发展到宽带信号谱分析方法,并且至今仍在继续发展的过程中。自前苏联阿盖耶娃发文以来7,声管的测量方法逐渐发展起,最初主要应用的是脉冲法。随着Chung和Blaser在理论和实验两个方面把传递函数法用于管道内的声场测量8,从而计算出管端材料的
25、声学性能。此后Corbett9又讨论了水声声管中进行材料测量的多种方法,着重讨论和发展了双水听器传递函数法。在声管测量方法发展的同时,在被测量样品的工作条件控制上无论是静水压控制还是温度控制都有了极大的发展。而在水声信号自动测量系统的研制方面,近几十年里,国内外都有了很大的进步。传统的测量系统已经跟不上现代实验发展的步伐,目前的水声实验基本上都是依靠自动化的测量设备来完成的。传统的水下噪声测量系统,主要由测量放大器和带通滤波器组成,需要手动笔录。由于噪声测量一般需要经过多次平均才能得到有效结果,因此如果我们要测量不同工作状态下的噪声,工作量之大是难以承受的。而且人工读数和手工计算还会引入误差,
26、降低测量精度。当前的测量系统往往是以计算机为核心,利用各种控制,分析软件以及A/D转换,数据采集卡和仪表的数字控制功能,完成对模拟声信号的离散化采集,数字化分析,并自动进行数据存储和输出,形成所谓虚拟仪器系统。它与传统的和专用的噪声测量系统相比,它具有处理速度快、使用简单灵活、测量结果准确等等优点。1.5 本文工作简介本文的工作主要包括两个方面的内容:风扇管道消声设计及水声材料的声管测量技术研究。下面分别进行介绍。1)风扇管道消声设计以吕亚东开发的模态匹配法计算程序为基础,更正了吕亚东文献中特征值求解公式推导过程中的错误;使用环绕积分方法取代原程序中Newton-Raphson方法计算特征值,
27、避免了特征值跳跃问题,使其能用于高阶周向模态的计算。并和CAA计算结果以及等价分布源法计算结果进行验证校核,证明模态匹配方法是一种能够提供参数优化趋势的快捷方法,可以应用于风扇管道的声衬优化设计。将完善后的程序应用于J-69-T41A轴流跨音转子及GF90轴流跨音转子声源的声衬优化设计,提出了优化设计的方法,并应用声衬声阻抗计算模型对结构参数进行了优化设计。这部分内容即为本论文的第二章的内容。2)水声材料的声管测量技术研究结合北航流体与声学工程实验室十五211工程建设项目完成了中低频水声声管的设计和建设;为了设计均衡器测定了发射换能器的频响曲线;调试了声管配套设备的功能,如打压系统、测量系统、
28、操作台架等的使用;进行了连续声测量功能的基本调试;进行了实验数据的分析;初步验证了设备的功能。由于工厂加工的均衡器及发射换能器收发合置控制设备未能及时交货,本文中未对加入均衡器后发射换能器的频响曲线进行测量,未能进行脉冲法测量的研究,这是以后需要需要补充进行的的。这部分内容即为本论文的第三到第五章的内容。第六章是总结。第二章 管道消声的模态匹配法优化设计2.1 前言随着民用飞机的日趋普及,航空噪声已成为一种重要的噪声污染源,同时由于各国对军机在声隐身方面的要求越来越高,航空噪声已经引起人们的普遍关注,并且成为检验民用飞机适航性的重要指标之一。西方国家相继投入了大量人力、物力进行航空噪声研究,并
29、取得了令人瞩目的成就,如低噪声技术已在Boeing747、Boeing757、A300、A310等大型客机上获得了广泛应用。随着我国新支线客机的研制和干线客机的研制逐步提到议事日程,降低飞机噪声、确保飞机符合航空噪声适航条例已成为迫在眉睫的问题。本研究是在吕亚东工作的基础上进行的,主要是校核程序的正确性并投入实际使用。在研究过程中发现吕亚东的文献中对特征值方程的推导有一定的错误;程序只能在低周向模态数下运行,在高阶周向模态数下运行出错。针对以上问题本研究提出了完善方法,并通过和其他计算方法的校核验证了程序的正确性,使其最终能投入实际优化设计工作中。2.2 物理模型及计算方法1)均匀流声衬圆形管
30、道声传播的边界值问题(1)微分方程对有均匀流的无限长管道声波满足如下对流波动方程: (2.1)在柱坐标系中对流波动方程可以通过采用分离变量法将其化为常微分方程,假设方程的一个特解为: (2.2)可得如下常微分方程组21: (2.5)(2.4)(2.3)式中是自由空间波数,、分别为径向波数、周向波数和轴向波数。由(2.3)及的周向周期性条件得到: (2.6)(2.4)式可化为: (2.7)是满足边界条件的特征值,向传播波数需要满足(2.5),这里规定流动方向在轴正方向。常微分方程(2.7)为整数阶的贝赛尔方程,它的通解为第一类和第二类贝赛尔函数: (2.8)园管时其解的形式中仅有第一类贝赛尔函数
31、,即B0。(2)边界条件假设软壁管道表面位移为: (2.9)这里实数,是复数。说明软壁管道呈行波的扰动。 (2.10)由管壁法向速度的动量方程得到: (2.11)(2.11)式表示这里的正方向在向径方向,即的正方向。将(2.9)代入后,得到, (2.12)这时引入无流动情况下的声导纳率, (2.13) (2.14)由(2.14)式说明的正方向也规定在的正方向,即的正方向。将(2.14)代入(2.13),得到: (2.15)由(2.12)及(2.15)得到壁面边界条件: (2.13)这里通过(2.5)式与相关联,它是求解特征值和特征函数的边界条件。将(2.5)式代入,即可得到求解特征值的复超越方
32、程。(3)特征值问题的讨论由(2.5)和(2.13)园管道求解特征值的复超越方程: (2.14)令化简得到如下的超越方程组: (2.15)求解这个超越方程组可得到径向特征值,和轴向传播波数。上式中除、及、外其余都为实数,因此,的共轭是以下超越方程的根。 (2.16)显然(2.15)与(2.16)中的第二式形式相同,第一式形式不同,相差一个符号,这说明共轭根并不是满足物理意义的解,但通过后面的讨论可以知道它代表了另一种波动表示形式的解。由(2.15)式得到: (2.17)以上的推导中声波是用传播用因子来表示,若规定为正值,亚音速条件下,声波从传播到,则要求: (2.18)第一式表示行波的传播方向
33、,第二式表示在传播方向上波是衰减的。根据(2.18)式选择式(2.17)式中平方根的正负号,实际上根据(2.18)的第二式确定正负号后,第一式可自动满足。当声波用与前一种情况共轭的传播因子来表示时,为保证波的正向传播及在传播方向是衰减的,仍需要满足(2.18),同时所有相应的复参数将为上一种情况的共轭,即软壁管道表面位移为: (2.19)软壁管道的行波扰动: (2.20) (2.21) (2.22) (2.23)在这种情况下的导纳是前一种情况的共轭。 (2.24)获得的求解特征值的超越方程与前一种情况也是共轭方程,由于方程右端有虚数单位,因此共轭后相差一个负号,为: (2.25)令,化简得到如
34、下的超越方程组:(2.26)(2.26)与(2.16)的形式相同,说明它是前一种情况特征值方程的共轭方程。类似的方法可讨论波传播用因子为的情况,相应的声导纳率和超越方程分别为: (2.27) (2.28)这时的导纳率也是第一种情况的共轭数,由于对不同的波传播表示方法得到的导纳率及特征方程不同,因此在与其它方法进行比较时需要特别注意。2)无限长软壁管道的声传播的模态展开在确定了特征值和传播波数后可以将管道声场用声模态展开: (2.29)对硬壁管道径向模态是正交的,可以方便地用正交展开的方法求解展开模态系数,对软壁管道其径向模态非正交,求解模态系数可首先正交化后求解,但对有限项近似展开可用保留交叉
35、项的方法计算13,见附录A。3)均匀流多段声衬圆形管道声传播预测模型对多段管道声传播问题可以近似为:1)每段管道的声场满足无限长管道声传播的模态展开形式;2)各段交界面满足声压和声质点速度连续条件;在(2.29)模态展开的基础上,在有前传和后传声波情况下。在j段任意轴向位置z的声压为: (2.30) (2.31) (2.32)这里我们以两段管道为例,如图2.1所示:STLJ图2.1 两段管道示意图(1)声压连续条件: (2.33)写成矩阵形式: (2.34)注意矩阵表示中的指标是这样规定的, 表示所在声衬管道段,表示传播方向,正号为向下游传播,负号为反射,这样表示段正向传播模态,表示段负向传播
36、模态。注意这里的矩阵都是针对相同周向模态下不同径向模态分量而言;如表示段正向传播模态特征函数,由于轴向传播的影响已包括在系数中,因此它只包括反映径向分布的特征函数,在圆形管道情况这就是贝赛尔函数;在硬壁条件其特征函数是正交的,并且上游模态与下游模态的特征值及特征函数相同,对软壁则不相同。(2)轴向速度分量连续条件 (2.35)为把轴向速度表示成声压形式应用动量定理:可得到: (2.36)将速度连续条件写成矩阵形式: (2.37)其中的元素是: (2.38)可以由上面的关系式求出在两段声衬的交接面上的模态系数匹配为: (2.39)上式的物理含义是传播方向下游端面传播方向的模态系数为,它是由上游端
37、面传播方向的模态通过传递矩阵传播过来,并包括下游反射模态的二次反射,其反射矩阵为。 (2.40)上式的物理含义是传播上游端面反射方向的模态系数为,它是由下游端面反射模态通过传递矩阵传播过来,并包括上游传播方向模态的反射,其反射矩阵为。为了计算传递矩阵和反射矩阵首先定义几个量。模态关联矩阵,表示模态向量与模态向量的关联矩阵,其通项为: (2.41)注意这里指标对应于模态,指标对应于模态。联立(2.34)(2.37)推导(2.39)(2.40)。推导(2.39)就是要在(2.34)(2.37)中消去,求向量,在(2.34)和(2.37)式中两边乘模态向量,并积分,得到: (2.42) (2.43)
38、由(2.40)式得到: (2.44)将(2.44)式代入(2.43)式,得到: (2.45)令: (2.46) (2.47) (2.48) (2.49)即得到(2.36)。 显然推导(2.40)就是要在(2.34)(2.37)中消去,求,在(2.34)和(2.37)式中两边乘模态向量,并积分,得到:(2.50) (2.51)由(2.51)式得到: (2.52)将(2.49)式代入(2.48)式,并利用下面的表达式(2.51),得到: (2.53) (2.54) (2.55) (2.56) (2.57)由以上表达式得到(2.37)式与声源与断口平面上前传和后传模态向量相关的方程分别为: (2.5
39、8)这里、分别是源平面和端口平面上的反射矩阵,、分别是源平面和端口平面上的广义模态向量。获得各管道分段界面上模态反射和模态透射以及在均匀管道中声波模态前传和后传之间互相关联的矩阵方程后,我们就可以通过源平面和端口平面上的广义模态向量,以及管道壁面上的声学参数和管道流动参数计算得到多段管道中任意截面处的声模态解向量。使用模态匹配方法得主要困难是确定源平面和端口平面上的反射矩阵,理论上可以通过实验或计算的方法获得反射矩阵,如使用实验测量的方法,但精确测量反射矩阵是非常困难的,历史上曾试图采用一些解析方法或数值方法来确定反射矩阵,但都没有得到实际应用。但是若将端口反射忽略,则反射矩阵、及端口广义矩阵
40、向量为零,相当于端口为无穷长无反射管道情况,则可方便地使用这种方法求解管道声衬的消声量,使用这种计算物理意义明确,十分快捷,作为一种近似设计的计算方法是十分有价值的。4)消声量计算由轴向声强公式16计算得到任意管段截面上的声能量。 (2.59) (2.60)通过所获得的多段管道中第一个平面和最后一个平面上的声能量通量可计算由管道中声衬引起的噪声的消声量。2.3 程序的完善与改进1) 原文献中特征值求解公式推导错误的改善在吕亚东的论文中,当假设软壁管道表面位移为:时,推导出来的特征值求解公式为:。但在公式验证推导过程中发现根据以上的边界条件推导出来的正确特征值求解公式应该是:。2) 特征值求解方
41、法的完善无限长软壁管道的声传播问题归结为特征值求解问题,即求解特征值的复数方程组(2.16),特征值求解的正确性对后面模态系数的求解有决定性的影响。对硬壁管道方程组(2.16)是实数方程组,容易使用Newton-Raphson法求解;当为软壁管道时方程组(2.16)是复数方程组,可以将原代数方程化为求解变量的常微分方程,以硬壁解为初始值求软壁的解,可以使用二阶的Newton-Raphson法求解常微分方程。原程序在求解的过程中就是这样使用二阶的Newton-Raphson法,四阶的Runge-Kutta法求解。但由于直接使用二阶的Newton-Raphson法在求解复数高阶模态过程中容易出现跳
42、根的情况,而使用首先求硬壁特征值,再用四阶的Runge-Kutta法求解软壁特征值的方法,求解精度不容易保证,并且一阶根很可能求解的不正确。最终选定的是环绕积分法12,使用这种方法能精确地依次获得各阶模态的径向本征值。对于复数的特征值方程是一个复数的超越方程,其求解的困难在于精确定位各阶复数根在复平面的位置,而使用Newton-Raphson法,或使用Runge-Kutta法都无法满足这项要求,而环绕积分方法的优点则是可精确定位各阶根的位置,并求解。根据复变函数的幅角原理,如果函数f(x)在简单闭曲线C的内部D除了有限个阶数分别是的极点外解析,在上除了点外连续,在C上没有零点与极点,而在D内有
43、阶数分别为的零点,那么零点的总个数N减去极点的总个数P为: (2.29)注意这里的总零点和总极点数包括了阶数,即二阶零点表示了两个零点,其中表示点z沿曲线C移动一圈后的复角改变量。设是曲线C在映射下的象,则称为曲线的回转次数。这个回转次数记录的是曲线穿过实轴轴的次数,如果从上向下穿过负实轴,那么加一,如果从下向上穿过负实轴,那么减一,这种穿越分别对应与封闭曲线内的零点与极点。利用幅角原理以及积分法求解非线性复数方程零点的解法,可以参考文献11和12。其中文献12对文献11进行了改进,利用矩形块将积分曲线逐步细化,使得封闭曲线内部细化到每一个小的矩形块中只包含有一个零点,然后用一阶环绕积分结合割线法求解零点,从而提高求解的精度。利用环绕积分方法求根过程中求根范围的选取是很重要的。对于优化设计这样大规模的计算如果用手动调节显然是不可取的,通过计算实践发现软壁特征值的实部是按照硬壁对应阶数的特征值按阶数次序排列的,如对于17阶周向模态软壁特征值的求解,对应硬壁一阶径向特征值为19.1,这样就可以大致确定软壁的一阶特征值求解的实部在19.1左右,这样实部从8开始,以步长2,虚部可以取统一的长度25这样的矩形范围为求解范围,直到所需径向特征值求解为止。其优点是可以将求解域分块,各个子块互不重叠,并且使得每个求解域内的零点个数尽量唯一。但需要注意的是利用环绕积分时一定要保证幅角连续,也