1、161.1 二次根式教学内容 二次根式的概念及其运用教学目标 理解二次根式的概念,并利用(a0)的意义解答具体题目 提出问题,根据问题给出概念,应用概念解决实际问题教学重难点关键 1重点:形如(a0)的式子叫做二次根式的概念; 2难点与关键:利用“(a0)”解决具体问题教学过程一、复习引入 (学生活动)请同学们独立完成下列三个课本P2的三个思考题:二、探索新知很明显、,都是一些正数的算术平方根像这样一些正数的算术平方根的式子,我们就把它称二次根式因此,一般地,我们把形如(a0)的式子叫做二次根式,“”称为二次根号 (学生活动)议一议: 1-1有算术平方根吗? 20的算术平方根是多少? 3当a0
2、)、-、(x0,y0) 分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0 解:二次根式有:、(x0)、-、(x0,y0);不是二次根式的有:、 例2当x是多少时,在实数范围内有意义? 分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-10,才能有意义 解:由3x-10,得:x 当x时,在实数范围内有意义三、巩固练习 教材P5练习1、2、3四、归纳小结(学生活动,老师点评) 本节课要掌握: 1形如(a0)的式子叫做二次根式,“”称为二次根号 2要使二次根式在实数范围内有意义,必须满足被开方数是非负数 五、布置作业 1教材P5 1,2,3,4 2选用课时
3、作业设计16.1.2 二次根式(2)教学内容 1(a0)是一个非负数; 2()2=a(a0)教学目标 理解(a0)是一个非负数和()2=a(a0),并利用它们进行计算和化简 通过复习二次根式的概念,用逻辑推理的方法推出(a0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a0);最后运用结论严谨解题 教学重难点关键 1重点:(a0)是一个非负数;()2=a(a0)及其运用 2难点、关键:用分类思想的方法导出(a0)是一个非负数;用探究的方法导出()2=a(a0) 教学过程 一、复习引入 (学生活动)口答 1什么叫二次根式? 2当a0时,叫什么?当a0时,有意义吗? 老师点评(略)
4、 二、探究新知 议一议:(学生分组讨论,提问解答) (a0)是一个什么数呢? 老师点评:根据学生讨论和上面的练习,我们可以得出 (a0)是一个非负数 做一做:根据算术平方根的意义填空:()2=_;()2=_;()2=_;()2=_;()2=_;()2=_;()2=_ 老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4 同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以 ()2=a(a0) 例1 计算 1()2 2(3)2 3()2 4()2 分析:我们可以直接利用()2=a(a0)的结论解题解:()2 =,(3)2 =3
5、2()2=325=45,()2=,()2= 三、巩固练习 计算下列各式的值:()2 ()2 ()2 ()2 (4)2 四、归纳小结 本节课应掌握: 1(a0)是一个非负数; 2()2=a(a0);反之:a=()2(a0) 五、布置作业 1教材P5 5,6,7,8 2选用课时作业设计 16.1 二次根式(3)教学内容 a(a0)教学目标 理解=a(a0)并利用它进行计算和化简 通过具体数据的解答,探究=a(a0),并利用这个结论解决具体问题教学重难点关键 1重点:a(a0)2难点:探究结论 3关键:讲清a0时,a才成立 教学过程 一、复习引入 老师口述并板收上两节课的重要内容; 1形如(a0)的
6、式子叫做二次根式; 2(a0)是一个非负数; 3()2a(a0) 那么,我们猜想当a0时,=a是否也成立呢?下面我们就来探究这个问题 二、探究新知 (学生活动)填空: =_;=_;=_; =_;=_;=_ (老师点评):根据算术平方根的意义,我们可以得到: =2;=0.01;=;=;=0;= 因此,一般地:=a(a0) 例1 化简 (1) (2) (3) (4)分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用=a(a0)去化简解:(1)=3 (2)=4 (3)=5 (4)=3 三、巩固练习 教材P7练习2 四、归纳小结 本节课应掌握:=
7、a(a0)及其运用,同时理解当a0时,a的应用拓展 五、布置作业 1教材P5习题161 3、4、6、8 2选作课时作业设计 162 二次根式的乘除教学内容 (a0,b0),反之=(a0,b0)及其运用 教学目标 理解(a0,b0),=(a0,b0),并利用它们进行计算和化简 由具体数据,发现规律,导出(a0,b0)并运用它进行计算;利用逆向思维,得出=(a0,b0)并运用它进行解题和化简 教学重难点关键 重点:(a0,b0),=(a0,b0)及它们的运用 难点:发现规律,导出(a0,b0) 关键:要讲清(a0,b、0),反过来=(a0,b0)及利用它们进行计算和化简教学目标 理解=(a0,b0
8、)和=(a0,b0)及利用它们进行运算 利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简教学重难点关键 1重点:理解=(a0,b0),=(a0,b0)及利用它们进行计算和化简 2难点关键:发现规律,归纳出二次根式的除法规定教学过程一、复习引入 (学生活动)请同学们完成下列各题: 1写出二次根式的乘法规定及逆向等式 2填空 (1)=_,=_; (2)=_,=_; (3)=_,=_; (4)=_,=_规律:_;_;_;_ 3利用计算器计算填空: (1)=_,(2)=_,(3)=_,(4)=_ 规律:_;_;_;_。 每组推荐一名学生上台阐述
9、运算结果 (老师点评) 二、探索新知 刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到: 一般地,对二次根式的除法规定:=(a0,b0),反过来,=(a0,b0) 下面我们利用这个规定来计算和化简一些题目 例1计算:(1) (2) (3) (4) 分析:上面4小题利用=(a0,b0)便可直接得出答案解:(1)=2 (2)=2(3)=2(4)=2 例2化简: (1) (2) (3) (4) 分析:直接利用=(a0,b0)就可以达到化简之目的解:(1)= (2)= (3)= (4)= 三、巩固练习 教材P14 练习1 四、归纳小结 本节课要掌握=(a0,b0)
10、和=(a0,b0)及其运用 五、布置作业 1习题162 2、7、8、9 2选用课时作业设计 21.2 二次根式的乘除(3)教学内容 最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算教学目标 理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式 通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求重难点关键 1重点:最简二次根式的运用 2难点关键:会判断这个二次根式是否是最简二次根式教学过程一、复习引入 (学生活动)请同学们完成下列各题(请三位同学上台板书) 1计算(1),(2),(3) 老师点评:=,=,= 2现
11、在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,那么它们的传播半径的比是_ 它们的比是二、探索新知 观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点: 1被开方数不含分母; 2被开方数中不含能开得尽方的因数或因式 我们把满足上述两个条件的二次根式,叫做最简二次根式 那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式 学生分组讨论,推荐34个人到黑板上板书老师点评:不是=. 例1(1) ; (2) ; (3) 例2如图,在RtABC中,C=90,AC=2.5cm,BC=6cm,求AB的长 解:因为AB2=AC2+BC2 所以AB=6
12、.5(cm) 因此AB的长为6.5cm 三、巩固练习 练习2、3 四、归纳小结 本节课应掌握:最简二次根式的概念及其运用 五、布置作业 1习题162 3、7、10 2选用课时作业设计21.3 二次根式的加减(1) 教学内容 二次根式的加减 教学目标 理解和掌握二次根式加减的方法 先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解再总结经验,用它来指导根式的计算和化简 重难点关键 1重点:二次根式化简为最简根式 2难点关键:会判定是否是最简二次根式 教学过程 一、复习引入 学生活动:计算下列各式 (1)2x+3x; (2)2x2-3x2+5x2; (3)x+2x+3y; (4
13、)3a2-2a2+a3 教师点评:上面题目的结果,实际上是我们以前所学的同类项合并同类项合并就是字母不变,系数相加减 二、探索新知 学生活动:计算下列各式(1)2+3 (2)2-3+5 (3)+2+3 (4)3-2+ 老师点评: (1)如果我们把当成x,不就转化为上面的问题吗? 2+3=(2+3)=5 (2)把当成y; 2-3+5=(2-3+5)=4=8 (3)把当成z; +2+ =2+2+3=(1+2+3)=6 (4)看为x,看为y 3-2+ =(3-2)+ =+ 因此,二次根式的被开方数相同是可以合并的,如2与表面上看是不相同的,但它们可以合并吗?可以的 (板书)3+=3+2=5 3+=3
14、+3=6 所以,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并 例1计算 (1)+ (2)+分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并 解:(1)+=2+3=(2+3)=5 (2)+=4+8=(4+8)=12 例2计算 (1)3-9+3 (2)(+)+(-) 解:(1)3-9+3=12-3+6=(12-3+6)=15 (2)(+)+(-)=+- =4+2+2-=6+ 三、巩固练习 教材P19 练习1、2 四、归纳小结 本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并
15、 五、布置作业 1习题163 1、2、3、5 2选作课时作业设计 21.3 二次根式的加减(2) 教学内容 利用二次根式化简的数学思想解应用题 教学目标 运用二次根式、化简解应用题 通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题 重难点关键 讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点 教学过程 一、复习引入 上节课,我们已经讲了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们讲三道例题以做巩固二、探索新知例1如图所示的RtABC中,B=90,点P从点B开始沿BA边以
16、1厘米/秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动问:几秒后PBQ的面积为35平方厘米?(结果用最简二次根式表示) 分析:设x秒后PBQ的面积为35平方厘米,那么PB=x,BQ=2x,根据三角形面积公式就可以求出x的值 解:设x 后PBQ的面积为35平方厘米 则有PB=x,BQ=2x 依题意,得:x2x=35 x2=35 x= 所以秒后PBQ的面积为35平方厘米 答:秒后PBQ的面积为35平方厘米 例2要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?分析:此框架是由AB、BC、BD、AC组成,所以要求钢架的钢材,只需知道这四段的长度 解:由勾股定
17、理,得 AB=2 BC= 所需钢材长度为 AB+BC+AC+BD =2+5+2 =3+7 32.24+713.7(m) 答:要焊接一个如图所示的钢架,大约需要13.7m的钢材 三、巩固练习 教材练习3 四、归纳小结 本节课应掌握运用最简二次根式的合并原理解决实际问题 五、布置作业 1习题163 7 2选用课时作业设计 21.3 二次根式的加减(3) 教学内容 含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用 教学目标 含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用 复习整式运算知识并将该知识运用于含有二次根式的式子的
18、乘除、乘方等运算 重难点关键 重点:二次根式的乘除、乘方等运算规律; 难点关键:由整式运算知识迁移到含二次根式的运算 教学过程 一、复习引入 学生活动:请同学们完成下列各题: 1计算 (1)(2x+y)zx (2)(2x2y+3xy2)xy 2计算 (1)(2x+3y)(2x-3y) (2)(2x+1)2+(2x-1)2 老师点评:这些内容是对八年级上册整式运算的再现它主要有(1)单项式单项式;(2)单项式多项式;(3)多项式单项式;(4)完全平方公式;(5)平方差公式的运用 二、探索新知 如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立 整式运算中的x、y、z是一种
19、字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式 例1计算: (1)(+) (2)(4-3)2 分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律 解:(1)(+)=+ =+=3+2 解:(4-3)2=42-32 =2- 例2计算 (1)(+6)(3-) (2)(+)(-) 分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立 解:(1)(+6)(3-) =3-()2+18-6 =13-3 (2)(+)(-)=()2-()2 =10-7=3 三、巩固练习 课本练习1、2 四、归纳小结 本节
20、课应掌握二次根式的乘、除、乘方等运算 五、布置作业 1习题163 1、8、9 2选用课时作业设计 171 勾股定理(一)一、教学目的1了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。2培养在实际生活中发现问题总结规律的意识和能力。3介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。二、重点、难点 1重点:勾股定理的内容及证明。 2难点:勾股定理的证明。三、例题的意图分析例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱
21、国情怀。例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。进一步让学生确信勾股定理的正确性。四、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。让学生画一个直角边为3cm和4cm的直角ABC,用刻度尺量出AB的长。以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角
22、形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。再画一个两直角边为5和12的直角ABC,用刻度尺量AB的长。你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。对于任意的直角三角形也有这个性质吗?五、例习题分析例1(补充)已知:在ABC中,C=90,A、B、C的对边为a、b、c。 求证:a2b2=c2。分析:让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。拼成如图所示,其等量关系为:4S+
23、S小正=S大正 4ab(ba)2=c2,化简可证。发挥学生的想象能力拼出不同的图形,进行证明。 勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。例2已知:在ABC中,C=90,A、B、C的对边为a、b、c。求证:a2b2=c2。分析:左右两边的正方形边长相等,则两个正方形的面积相等。左边S=4abc2右边S=(a+b)2左边和右边面积相等,即4abc2=(a+b)2化简可证。六、课堂练习1勾股定理的具体内容是: 。2如图,直角ABC的主要性质是:C=90,(用几何语言表示)两锐角之间的关系: ;若D为斜边中点,则斜边中线 ;
24、若B=30,则B的对边和斜边: ;三边之间的关系: 。3ABC的三边a、b、c,若满足b2= a2c2,则 =90; 若满足b2c2a2,则B是 角; 若满足b2c2a2,则B是 角。4根据如图所示,利用面积法证明勾股定理。171 勾股定理(二)一、教学目的1会用勾股定理进行简单的计算。 2树立数形结合的思想、分类讨论思想。二、重点、难点1重点:勾股定理的简单计算。 2难点:勾股定理的灵活运用。三、例题的意图分析例1(补充)使学生熟悉定理的使用,刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。让学生明确在直角三角形中,已知任意两边都可以求出第三边。并学会利用不同的条件转化为已知两
25、边求第三边。例2(补充)让学生注意所给条件的不确定性,知道考虑问题要全面,体会分类讨论思想。例3(补充)勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。让学生把前面学过的知识和新知识综合运用,提高综合能力。四、课堂引入复习勾股定理的文字叙述;勾股定理的符号语言及变形。学习勾股定理重在应用。五、例习题分析例1(补充)在RtABC,C=90已知a=b=5,求c。 已知a=1,c=2, 求b。 已知c=17,b=8, 求a。已知a:b=1:2,c=5, 求a。 已知b=15,A=30,求a,c。分析:刚开始使用定理,让学生画好图形,并标好图形,理
26、清边之间的关系。已知两直角边,求斜边直接用勾股定理。已知斜边和一直角边,求另一直角边,用勾股定理的便形式。已知一边和两边比,求未知边。通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想。例2(补充)已知直角三角形的两边长分别为5和12,求第三边。分析:已知两边中较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进形计算。让学生知道考虑问题要全面,体会分类讨论思想。例3(补充)已知:如图,等边ABC的边长是6cm。求等边ABC的高。 求SABC。分析:勾股定理的使
27、用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。欲求高CD,可将其置身于RtADC或RtBDC中,但只有一边已知,根据等腰三角形三线合一性质,可求AD=CD=AB=3cm,则此题可解。六、课堂练习1填空题在RtABC,C=90,a=8,b=15,则c= 。在RtABC,B=90,a=3,b=4,则c= 。在RtABC,C=90,c=10,a:b=3:4,则a= ,b= 。一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。已知直角三角形的两边长分别为3cm和5cm,则第三边长为 。已知等边三角形的边长为2cm,则它的高为 ,面积为 。2已知:如图
28、,在ABC中,C=60,AB=,AC=4,AD是BC边上的高,求BC的长。 3已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。171 勾股定理(三)一、教学目的1会用勾股定理解决简单的实际问题。2树立数形结合的思想。二、重点、难点1重点:勾股定理的应用。2难点:实际问题向数学问题的转化。三、例题的意图分析例1(教材探究1)明确如何将实际问题转化为数学问题,注意条件的转化;学会如何利用数学知识、思想、方法解决实际问题。例2(教材探究2)使学生进一步熟练使用勾股定理,探究直角三角形三边的关系:保证一边不变,其它两边的变化。四、课堂引入勾股定理在实际的生产生活当中有着广泛的应用。勾股
29、定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。五、例习题分析例1(教材探究1)分析:在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,即门框为长方形,四个角都是直角。让学生深入探讨图中有几个直角三角形?图中标字母的线段哪条最长?指出薄木板在数学问题中忽略厚度,只记长度,探讨以何种方式通过?转化为勾股定理的计算,采用多种方法。注意给学生小结深化数学建模思想,激发数学兴趣。例2(教材探究2)分析:在AOB中,已知AB=3,AO=2.5,利用勾股定理计算OB。 在COD中,已知CD=3,CO=2,利用勾股定理计算OD。则BD=ODOB,通过计
30、算可知BDAC。进一步让学生探究AC和BD的关系,给AC不同的值,计算BD。六、课堂练习1小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是 米。2如图,山坡上两株树木之间的坡面距离是4米,则这两株树之间的垂直距离是 米,水平距离是 米。2题图 3题图 4题图3如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是 。4如图,原计划从A地经C地到B地修建一条高速公路,后因技术攻关,可以打隧道由A地到B地直接修建,已知高速公路一公里造价为300万元,隧道总长为2公里,隧道造价为500万元,AC=80公里,BC=60公里,则
31、改建后可省工程费用是多少?171 勾股定理(四)一、教学目的1会用勾股定理解决较综合的问题。2树立数形结合的思想。二、重点、难点1重点:勾股定理的综合应用。2难点:勾股定理的综合应用。三、例题的意图分析例1(补充)“双垂图”是中考重要的考点,熟练掌握“双垂图”的图形结构和图形性质,通过讨论、计算等使学生能够灵活应用。目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC2-BD2=AC2-AD2,两对相等锐角,四对互余角,及30或45特殊角的特殊性质等。例2(补充)让学生注意所求结论的开放性,根据已知条件,作适当辅助线求出三角形中的边和角。让学生掌握解一般三角形的问题常常通
32、过作高转化为直角三角形的问题。使学生清楚作辅助线不能破坏已知角。例3(补充)让学生掌握不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差。在转化的过程中注意条件的合理运用。让学生把前面学过的知识和新知识综合运用,提高解题的综合能力。例4(教材P76页探究3)让学生利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。四、课堂引入 复习勾股定理的内容。本节课探究勾股定理的综合应用。五、例习题分析例1(补充)1已知:在RtABC中,C=90,CDBC于D,A=60,CD=,求线段AB的长。分析:本题是“双垂
33、图”的计算题,“双垂图”是中考重要的考点,所以要求学生对图形及性质掌握非常熟练,能够灵活应用。目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC2-BD2=AC2-AD2,两对相等锐角,四对互余角,及30或45特殊角的特殊性质等。 要求学生能够自己画图,并正确标图。引导学生分析:欲求AB,可由AB=BD+CD,分别在两个三角形中利用勾股定理和特殊角,求出BD=3和AD=1。或欲求AB,可由,分别在两个三角形中利用勾股定理和特殊角,求出AC=2和BC=6。例2(补充)已知:如图,ABC中,AC=4,B=45,A=60,根据题设可知什么?分析:由于本题中的ABC不是直角三角
34、形,所以根据题设只能直接求得ACB=75。在学生充分思考和讨论后,发现添置AB边上的高这条辅助线,就可以求得AD,CD,BD,AB,BC及SABC。让学生充分讨论还可以作其它辅助线吗?为什么?小结:可见解一般三角形的问题常常通过作高转化为直角三角形的问题。并指出如何作辅助线?解略。例3(补充)已知:如图,B=D=90,A=60,AB=4,CD=2。求:四边形ABCD的面积。分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。教学中要逐层展示给学生,让学生深入体会。解:延长AD、
35、BC交于E。A=60,B=90,E=30。AE=2AB=8,CE=2CD=4,BE2=AE2-AB2=82-42=48,BE=。DE2= CE2-CD2=42-22=12,DE=。S四边形ABCD=SABE-SCDE=ABBE-CDDE=小结:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差。例4(教材探究3)分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。变式训练:在数轴上画出表示的点。六、课堂练习1ABC中,AB=AC=25cm,高AD=20cm,则BC= ,SABC= 。2ABC中,若A=2B=3C,AC=cm,则A= 度,B= 度,C= 度,BC= ,SABC= 。3ABC中,C=90,AB=4,BC=,CDAB于D,则AC= ,CD= ,BD= ,AD= ,SABC= 。4已知:如图,ABC中,AB=26,BC=25,AC=17,求SABC。172 勾股定理的逆定理(一)一、教学目的1体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。