收藏 分销(赏)

椭圆的焦点弦长公式.docx

上传人:天**** 文档编号:2405371 上传时间:2024-05-29 格式:DOCX 页数:2 大小:70.81KB
下载 相关 举报
椭圆的焦点弦长公式.docx_第1页
第1页 / 共2页
椭圆的焦点弦长公式.docx_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

椭圆的焦点弦长公式及其应用在有关椭圆的综合题中,常常遇到椭圆焦点弦的问题,如何解决这类问题呢首先我们有命题:若椭圆的焦点弦所在直线的倾斜角为,、分别表示椭圆的长半轴长、短半轴长和焦半距,则有。上面命题的证明很容易得出,在此笔者只谈谈该命题的应用。例1、已知椭圆的长轴长,焦距,过椭圆的焦点作一直线交椭圆于、两点,设,当取什么值时,等于椭圆的短轴长 分析:由题意可知是椭圆的焦点弦,且,从而,故由焦点弦长公式及题设可得:,解得,即或。 例2、在直角坐标系中,已知椭圆E的一个焦点为F(3,1),相应于F的准线为Y轴,直线通过点F,且倾斜角为,又直线被椭圆E截得的线段的长度为,求椭圆E的方程。分析:由题意可设椭圆E的方程为,又椭圆E相应于F的准线为Y轴,故有 (1), 又由焦点弦长公式有 (2)又 (3)。解由(1)、(2)、(3)联列的方程组得:,从而所求椭圆E的方程为。例3、已知椭圆C:(),直线:被椭圆C截得的弦长为,过椭圆右焦点且斜率为的直线被椭圆C截得的弦长是它的长轴长的,求椭圆C的方程。分析:由题意可知直线过椭圆C的长、短轴的两个端点,故有, (1)又由焦点弦长公式得=, (2) 因=,得,(3)又 (4)。解由(1)、(2)、(3)、(4)联列的方程组得:,从而所求椭圆E的方程为。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服