1、南风书院鸡兔同笼问题一常见题型:类型1、已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只。解题关键:采用假设法,假设全是一种动物(如全是鸡或全是兔),然后根据腿的差数可以推断出一种动物的头数。解题规律:假设全是鸡,兔子头数=(总腿数鸡腿数)2; 即兔子头数=(总腿数2总头数)2。 假设全是兔子,鸡的只数=(兔子腿数总腿数)2, 即鸡的只数=(4总头数总腿数)2类型2、已知总头数和鸡兔脚数的差数,求鸡兔各多少只(1)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时, (每只鸡脚数总头数-鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数 或(每只兔脚数总头数+
2、鸡兔脚数之差)(每只鸡的脚数+每只免的脚数)=鸡数; 总头数-鸡数=兔数。(2)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时。 (每只鸡的脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数。 或(每只兔的脚数总头数-鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=鸡数; 类型3、鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),(两次总脚数之和)(每只鸡兔脚数和)+(两次总脚数之差)(每只鸡兔脚数之差)2=鸡数;(两次总脚数之和)(每只鸡兔脚数之和)-(两次总脚数之差)(每只鸡兔脚数之差)2=兔数。类型4、得失问题(鸡兔问题的推广题)的
3、解法,可以用下面的公式: (1只合格品得分数产品总数-实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。 或者是总产品数-(每只不合格品扣分数总产品数+实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。二、专项训练1.鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?2.在一个停车场上,停了汽车和摩托车一共32辆。其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子。求汽车和摩托车各有多少辆?3、小华买了2元和5元纪念邮票一共34张,用去98元钱。求小华买了2元和5元的纪念邮票各多少张?4、学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,
4、恰好可供120个学生进行活动。问:象棋与跳棋各有多少副?5、动物园里饲养一群丹顶鹤和一群猴子数眼睛共只,数脚共只,丹顶鹤和猴子各有多少只?6、我们班41名少先队员去儿童公园划船,共租了8条船,恰好坐满,每条大船坐7人,每条小船坐4人,问大船和小船各租了几条? 7、一个工人植树,晴天每天植树20棵,雨天每天植树12棵,他接连几天共植树112棵,平均每天植树14棵。问:这几天中共有几个雨天?第二组:1、鸡兔同笼,鸡比兔多15只,鸡兔共有脚 132只,问鸡兔各多少只?2、 有鸡兔共30只,兔脚比鸡脚多60只,问鸡兔各多少只?3、鸡兔同笼,鸡兔共40个头,鸡脚比兔脚共多32只,问鸡兔各多少只?4、小朋
5、友们去划船,大船可以坐10人,小船坐6人,小朋友们共租了15只船,已知乘大船的人比乘小船的人多22人,问大船几只,小船几只?5、龟、鹤共有100个头,鹤腿比龟腿多20只。问:龟、鹤各几只?6.东湖小学六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了几题?7、工人运花瓶250个,规定完整运一个到达目的给运费20元,损坏一个要赔100元。运完这批花瓶后,工人共得4400元,问损坏了几个花瓶?8、“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3
6、525分,问其中有多少个灯泡不合格?”第三组:1、有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只? 2、鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。问:鸡、兔各几只?3、 小朋友们去划船,大船可以坐10人,小船坐6人,能坐130人,如果把大船和小船的只数互换则少坐20人,问大船几只,小船几只?第四组:1.有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀),三种动物各几只?2.小东妈妈从单位领回奖金380元,其中有2元、5元、10元人民币共80张,且5元和10元的张数相等,试问,这三种人民币各有多少张?3、100个馒头100个和尚吃,大和尚每人吃4个,小和尚4人吃一个,则大和尚有多少个?小和尚有多少个?4、大油瓶一瓶装4千克,小油瓶两瓶装1千克。现在100千克油装了60个瓶。求大,小油瓶各有多少个?5、在很久很久以前,传说有九头一尾的九头鸟和九尾一头的九尾鸟。有一次这两种鸟栖息在树林里,一位猎人经过此地数了数,这两种鸟头共268个,尾332个,那么有九头鸟和九尾鸟各多少只?4