收藏 分销(赏)

新课标必修5数学基本不等式经典例题(含知识点和例题详细解析).doc

上传人:a199****6536 文档编号:2389958 上传时间:2024-05-29 格式:DOC 页数:6 大小:414.51KB
下载 相关 举报
新课标必修5数学基本不等式经典例题(含知识点和例题详细解析).doc_第1页
第1页 / 共6页
新课标必修5数学基本不等式经典例题(含知识点和例题详细解析).doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述
基本不等式 知识点: 1. (1)若,则 (2)若,则 (当且仅当时取“=”) 2. (1)若,则 (2)若,则 (当且仅当时取“=”) (3)若,则 (当且仅当时取“=”) 3.若,则 (当且仅当时取“=”) 若,则 (当且仅当时取“=”) 若,则 (当且仅当时取“=”) 4.若,则 (当且仅当时取“=”)若,则 (当且仅当时取“=”) 5.若,则(当且仅当时取“=”) 注意: (1) 当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域 (1)y=3x 2+ (2)y=x+ 解:(1)y=3x 2+≥2= ∴值域为[,+∞) (2)当x>0时,y=x+≥2=2; 当x<0时, y=x+= -(- x-)≤-2=-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知,求函数的最大值。 解:因,所以首先要“调整”符号,又不是常数,所以对要进行拆、凑项, , 当且仅当,即时,上式等号成立,故当时,。 技巧二:凑系数 例: 当时,求的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到为定值,故只需将凑上一个系数即可。 当,即x=2时取等号 当x=2时,的最大值为8。 变式:设,求函数的最大值。 解:∵∴∴ 当且仅当即时等号成立。 技巧三: 分离 技巧四:换元 例:求的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离。 当,即时,(当且仅当x=1时取“=”号)。 解析二:本题看似无法运用均值不等式,可先换元,令t=x+1,化简原式在分离求最值。 当,即t=时,(当t=2即x=1时取“=”号)。 技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数的单调性。 例:求函数的值域。 解:令,则 因,但解得不在区间,故等号不成立,考虑单调性。 因为在区间单调递增,所以在其子区间为单调递增函数,故。 所以,所求函数的值域为。 技巧六:整体代换 多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 例:已知,且,求的最小值。 错解:,且, 故 。 错因:解法中两次连用均值不等式,在等号成立条件是,在等号成立条件是即,取等号的条件的不一致,产生错误。因此,在利用均值不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。 正解:, 当且仅当时,上式等号成立,又,可得时, 。 技巧七 例:已知x,y为正实数,且x 2+=1,求x的最大值. 分析:因条件和结论分别是二次和一次,故采用公式ab≤。 同时还应化简中y2前面的系数为 , x=x =x· 下面将x,分别看成两个因式: x·≤== 即x=·x ≤ 技巧八: 已知a,b为正实数,2b+ab+a=30,求函数y=的最小值. 分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。 法一:a=, ab=·b= 由a>0得,0<b<15 令t=b+1,1<t<16,ab==-2(t+)+34∵t+≥2=8 ∴ ab≤18 ∴ y≥ 当且仅当t=4,即b=3,a=6时,等号成立。 法二:由已知得:30-ab=a+2b∵ a+2b≥2  ∴ 30-ab≥2 令u= 则u2+2u-30≤0, -5≤u≤3 ∴≤3,ab≤18,∴y≥ 点评:①本题考查不等式的应用、不等式的解法及运算能力;②如何由已知不等式出发求得的范围,关键是寻找到之间的关系,由此想到不等式,这样将已知条件转换为含的不等式,进而解得的范围. 技巧九、取平方 例: 求函数的最大值。 解析:注意到与的和为定值。 又,所以 当且仅当=,即时取等号。 故。 应用二:利用均值不等式证明不等式 例:已知a、b、c,且。求证: 分析:不等式右边数字8,使我们联想到左边因式分别使用均值不等式可得三个“2”连乘,又,可由此变形入手。 解:a、b、c,。。同理,。上述三个不等式两边均为正,分别相乘,得 。当且仅当时取等号。 应用三:均值不等式与恒成立问题 例:已知且,求使不等式恒成立的实数的取值范围。 解:令, 。 , 应用四:均值定理在比较大小中的应用: 例:若 ,则的大小关系是 . 分析:∵ ∴ ( ∴R>Q>P。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服