收藏 分销(赏)

二次函数应用题分类和解析.doc

上传人:精**** 文档编号:2374873 上传时间:2024-05-29 格式:DOC 页数:16 大小:315.50KB
下载 相关 举报
二次函数应用题分类和解析.doc_第1页
第1页 / 共16页
二次函数应用题分类和解析.doc_第2页
第2页 / 共16页
二次函数应用题分类和解析.doc_第3页
第3页 / 共16页
二次函数应用题分类和解析.doc_第4页
第4页 / 共16页
二次函数应用题分类和解析.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、二次函数应用题分类解析二次函数是初中学段的难点,学生学起来觉的比较的吃力,可以把应用问题进行分类:第一类、利用待定系数法对于题目明确给出两个变量间是二次函数关系,并且给出几对变量值,要求求出函数关系式,并进行简单的应用。解答的关键是熟练运用待定系数法,准确求出函数关系式。例1 某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告。根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:x(十万元)012y11.51.8(1)求y与x的函数关系式;(2)如果把利润看作是

2、销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元)的函数关系式;(3)如果投入的年广告费为1030万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?析解:(1)因为题中给出了y是x的二次函数关系,所以用待定系数法即可求出y与x的函数关系式为(2)由题意得S=10y(3-2)-x(3)由(2)及二次函数性质知,当1x2.5,即广告费在1025万元之间时,S随广告费的增大而增大。二、分析数量关系型题设结合实际情景给出了一定数与量的关系,要求在分析的基础上直接写出函数关系式,并进行应用。解答的关键是认真分析题意,正确写出数量关系式。例2 某化工材料经销公司购进了

3、一种化工原料共7000千克,购进价格为每千克30元。物价部门规定其销售单价不得高于每千克70元,也不得低于30元。市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算)。设销售单价为x元,日均获利为y元。(1)求y关于x的二次函数关系式,并注明x的取值范围;(2)将(1)中所求出的二次函数配方成的形式,写出顶点坐标;在图2所示的坐标系中画出草图;观察图象,指出单价定为多少元时日均获得最多,是多少?(3)若将这种化工原料全部售出,比较日均获利最多和销售单价最高这两种销售方式,哪一种获总利较多,多

4、多少?析解:(1)若销售单价为x元,则每千克降低(70-x)元,日均多售出2(70-x)千克,日均销售量为60+2(70-x)千克,每千克获利为(x-30)元。根据题意得(30x70)。(2)。顶点坐标为(65,1950),草图略,当单价定为65元时,日均获利最多,是1950元。(3)列式计算得,当日均获利最多时,可获总利195000元;当销售单价最高时,可获总利221500元。故当销售单价最高时获总利较多,且多获利221500-195000=26500元。三、建模型即要求自主构造二次函数,利用二次函数的图象、性质等解决实际问题。这类问题建模要求高,有一定难度。例3如图4,有一块铁皮,拱形边缘

5、呈抛物线状,MN=4dm,抛物线顶点处到边MN的距离是4dm,要在铁皮上截下一矩形ABCD,使矩形顶点B、C落在边MN上,A、D落在抛物线上,问这样截下去的矩形铁皮的周长能否等于8dm?析解:由“抛物线”联想到二次函数。如图4,以MN所在的直线为x轴,点M为原点建立直角坐标系。设抛物线的顶点为P,则M(0,0),N(4,0),P(2,4)。用待定系数法求得抛物线的解析式为。设A点坐标为(x,y),则AD=BC=2x-4,AB=CD=y。于是。且x的取值范围是0x4(x2)。若l=8,则,即。解得。而0x0所以由图象不难得出在1x6范围内,当x=6时,W有最大值W最大=62+14=18.5当6x

6、11时,W=x22x+26因为对称轴为直线x=8,在6x11范围内,由图象可看出在x=11时,W有最大值W最大=112211+26=19当12x16时,W=x24x+48对称轴为直线x=16由图象可以看出在12x16范围内,x=12时,W有最大值W最大=122412+48=18综上所述,当x=11时销售利润最大,最大值为19元。二次函数经典应用题练习题1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将

7、售价定为多少元?最大销售利润是多少?2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台 (1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围) (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?3、张大爷要围成一个矩形花圃花圃的一边利用足够长的墙另三边用总长为32

8、米的篱笆恰好围成围成的花圃是如图所示的矩形ABCD设AB边的长为x米矩形ABCD的面积为S平方米 (1)求S与x之间的函数关系式(不要求写出自变量x的取值范围) (2)当x为何值时,S有最大值?并求出最大值(参考公式:二次函数(),当时,)4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y(元)与月份x之间满足函数关系,去年的月销售量p(万台)与月份x之间成一次函数关系,其中两个月的销售情况如下表:月份1月5月销售量3.9万台4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12

9、月份下降了,且每月的销售量都比去年12月份下降了1.5m%国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求的值(保留一位小数)(参考数据:,)5、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,(1)求一次函数的表达式;(2)若该商场获

10、得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围6、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。 (1)请建立销售价格y(元)与周次x之间的函数关系; (2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x之间的关系为, 1 x 11,且x为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?

11、)7、茂名石化乙烯厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:价目品种出厂价成本价排污处理费甲种塑料2100(元/吨)800(元/吨)200(元/吨)乙种塑料2400(元/吨)1100(元/吨)100(元/吨)每月还需支付设备管理、维护费20000元 (1)设该车间每月生产甲、乙两种塑料各吨,利润分别为元和元,分别求和 与的函数关系式(注:利润=总收入-总支出); (2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨,获得的总利润最大?最大利润是多少?8、某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查调查发现这种水产品的每千克售价(元)与销售月份(月)满足关系式,而其每千克成本(元)与销售月份(月)满足的函数关系如图所示(1)试确定的值;(2)求出这种水产品每千克的利润(元)与销售月份(月)之间的函数关系式;(3)“五一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?2524y2(元)x(月)1 2 3 4 5 6 7 8 9 10 11 12 第8题图O16 / 16

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服