收藏 分销(赏)

污水处理厂毕业设计方案含计算数据.doc

上传人:天**** 文档编号:2373084 上传时间:2024-05-29 格式:DOC 页数:80 大小:1.76MB
下载 相关 举报
污水处理厂毕业设计方案含计算数据.doc_第1页
第1页 / 共80页
污水处理厂毕业设计方案含计算数据.doc_第2页
第2页 / 共80页
污水处理厂毕业设计方案含计算数据.doc_第3页
第3页 / 共80页
污水处理厂毕业设计方案含计算数据.doc_第4页
第4页 / 共80页
污水处理厂毕业设计方案含计算数据.doc_第5页
第5页 / 共80页
点击查看更多>>
资源描述

1、一、污水处理工艺选择和可行性分析1、污水厂设计规模近期污水量为2104 m3/d,远期污水量为4104 m3/d,其中生活污水和工业废水所占百分比约为6:4。污水厂关键处理构筑物拟分为二组,这么既可满足近期处理水量要求,又留有空地以二期扩建之用。2、进出水水质单位:mg/LCODBOD5SSNH3NTNTP进 水50018042030605出 水6020208201因为进水不仅含有BOD5,还含有大量N,P所以不仅要求去除BOD5还应去除水中N,P使其达成排放标准。3、处理程度计算1. BOD5去除率2 .COD去除率3.SS去除率4.总氮去除率 5.总磷去除率4、 本工程采取生物脱氮除磷工艺

2、可行性BOD5:N:P比值是影响生物脱氮除磷关键原因,氮和磷去除率伴随BOD5/N和BOD5/P比值增加而增加。理论上,BOD5/N2.86才能有效地进行脱氮,实际运行资料表明,BOD5/N3时才能使反硝化正常进行。在BOD5/N=45时,氮去除率大于50%,磷去除率也可达60%左右。本工程BOD5/N=3,能够满足生物脱氮要求。对于生物除磷工艺,要求BOD5/P=33100。本工程BOD5/P等于36,能满足生物脱氮除磷工艺对碳源要求,由此本工艺采取生物脱氮除磷工艺。在脱氮方面,由脱氮除磷机理可知,有机负荷是影响硝化反应关键原因之一,在碳化和硝化合并处理工艺中,硝化菌所占百分比很小,约5%。

3、通常认为处理系统BOD5负荷小于0.15kg BOD5/kgMLSS.d时,处理系统硝化反应才能正常进行。依据所给定污水水量及水质,参考现在中国外城市污水处理厂设计及运转经验,对于生活污水占百分比较大城市污水而言,以下多个方法最具代表性:A2/O法、AB法、生物滤池、循环式活性污泥法(改良SBR)、氧化沟法。5、工艺比较及确定城市污水处理厂方案,既要考虑去除BOD5又要合适去除N,P故可采取SBR或氧化沟法,或A2/O法。A A2/O法A2/O工艺即缺氧/厌氧/好氧活性污泥法, A2/O法处理城市污水特点:运行费用较传统活性污泥法低,曝气池池容小,需气量少,含有脱氮除磷功效,BOD5和SS去除

4、率高,出水水质很好,工作稳定可靠,有较成熟设计、施工及运行管理经验,产泥量较传统活性污泥法少;污泥脱水性能很好;无需设初沉池;对水质和水温度化有一定适应能力;另外,从节省能耗角度看,A2/O能够充足利用硝化液中硝态氧来氧化BOD5,回收了部分硝化反应需氧量,反硝化反应所产生碱度能够部分赔偿硝化反应消耗碱度,所以对含氮浓度不高城市污水能够不另外加碱来调整PH。优点:该工艺为最简单同时脱氮除磷工艺 ,总水力停留时间,总产占地面积少于其它工艺 。在厌氧好氧交替运行条件下,丝状菌得不到大量增殖,无污泥膨胀之虑,SVI值通常均小于100,有利于泥水分离。污泥中含磷浓度高,含有很高肥效。运行中勿需投药,两

5、个A段只用轻缓搅拌,以不溶解氧浓度,运行费低。缺氧、厌氧和好氧三个分区严格分开,有利于不一样微生物菌群繁殖生长,脱氮除磷效果好。 缺点:内循环量通常以2Q为限,不宜太高,不然增加运行费用。对沉淀池要保持一定浓度溶解氧,降低停留时间,预防产生厌氧状态和污泥释放磷现象出现,但溶解 浓度也不宜过高。以预防循环混合液对缺氧反应器干扰。B SBR法工艺步骤:污水 一级处理 曝气池 处理水工作原理:1)流入工序:废水注入,注满后进行反应,方法有单纯注水,曝气,缓速搅拌三种,2)曝气反应工序:当污水注满后即开始曝气操作,这是最关键工序,依据污水处理目标,除P脱N应进行对应处理工作。3)沉淀工艺:使混合液泥水

6、分离,相当于二沉池,4)排放工序:排除曝气沉淀后产生上清液,作为处理水排放,一直到最低水位,在反应器残留一部分活性污泥作为种泥。5)待机工序:工处理水排放后,反应器处于停滞状态等候一个周期。特点:大多数情况下,无设置调整池心要。SVI值较低,易于沉淀,通常情况下不会产生污泥膨胀。经过对运行方法调整,进行除磷脱氮反应。自动化程度较高。适当初,处理效果优于连续式。单方投资较少。占地规模大,处理水量较小。C氧化沟工作步骤: 污水中格栅提升泵房细格栅沉砂池氧化沟二沉池接触池处理水排放工作原理:氧化沟通常呈环形沟渠状,污水在沟渠内作环形流动,利用独特水力流动特点,在沟渠转弯处设曝气装置,在曝气池上方为厌

7、氧池,下方则为好氧段,从而产生富氧区和缺氧区,能够进行硝化和反硝化作用,取得脱氮效应,同时氧化沟法污泥龄较长,能够存活世代时间较长微生物进行尤其反应,如除磷脱氮。工作特点:在液态上,介于完全混合和推流之间,有利于活性污泥适于生物凝聚作用。对水量水温改变有较强适应性,处理水量较大。污泥龄较长,通常长达1530天,到以存活时间较长微生物,假如运行适当,可进行除磷脱氮反应。污泥产量低,且多已达成稳定。自动化程度较高,使于管理。占地面积较大,运行费用低。脱氮效果还能够深入提升,因为脱氮效果好坏很大一部分决定于内循环,要提升脱氮效果势必需增加内循环量,而氧化沟内循环量从政论上说能够不受限制,所以含有更大

8、脱氮能力。氧化沟法自问世以来,应用普遍,技术资料丰富。 D 曝气-沉淀 一体化反应池(一体化氧化沟又称合建式氧化沟)一体化氧化沟集曝气,沉淀,泥水分离和污泥回流功效为一体,无需建造单独得二沉池。基础运行方法大致分六个阶段(包含两个过程)。阶段A:污水经过配水闸门进入第一沟,沟内出水堰能自动调整向上关闭,沟内转刷以低转速运转,仅维持沟内污泥悬浮状态下环流,所供氧量不足,此系统处于缺氧状态,反硝化菌将上阶段产生硝态氮还原成氮气逸出。在这过程中,原生污水作为碳源进入第一沟,污泥污水混合液环流后进入第二沟。第二沟内转刷在整个阶段均以高速运行,污水污泥混合液在沟内保持恒定环流,转刷所供氧量足以氧化有机物

9、并使氨氮转化成硝态氮,处理后污水和活性污泥一起进入第三沟。第三沟沟内转刷处于闲置状态,此时,第三沟仅用作沉淀池,使泥水分离,处理后出水经过已降低出水堰从第三沟排出。阶段B:污水入流从第一沟调入第二沟,第一沟内转刷开始高速运转。开始,沟内处于缺氧状态,伴随供氧量增加,将逐步成为富氧状态。第二沟内处理过污水和活性污泥一起进入第三沟,第三沟仍作为沉淀池,沉淀后污水经过第三沟出水堰排出。阶段C:第一沟转刷停止运转,开始泥水分离,需要设过渡段,约一小时,至该阶段末,分离过程结束。在C阶段,入流污水仍然进入第二沟,处理后污水仍然经过第三沟出水堰排出。阶段D:污水入流从第二沟调至第三沟,第一沟出水堰开, 第

10、三沟出水堰关停止出水。同时, 第三沟内转刷开始以低转速运转,污水污泥一起流入第二沟,在第二沟曝气后再流入第一沟。此时,第一沟作为沉淀池。阶段D和阶段A相类似,所不一样是反硝化作用发生在第三沟,处理后污水经过第一沟已降低出水堰排出。阶段E:污水入流从第三沟转向第二沟,第三沟转刷开始高速运转,以确保该段末在沟内为硝化阶段,第一沟作为沉淀池,处理后污水经过该沟出水堰排出。阶段E和阶段B类似,所不一样是两个外沟功效相反。阶段F:该阶段基础和C阶段相同,第三沟内转刷停止运转,开始泥水分离,入流污水仍然进入第二沟,处理后污水经第一沟出水堰排出。其关键特点:工艺步骤短,构筑物和设备少,不设初沉池,调整池和单

11、独二沉池,污泥自动回流,投资省,能耗低,占地少,管理简便。处理效果稳定可靠,其BOD5和SS去除率均在90-95或更高。COD去除率也在85以上,而且硝化和脱氮作用显著。产生得剩下污泥量少,性质稳定,易脱水,不会带来二次污染。造价低,建造快,设备事故率低,运行管理费用少。固液分离效率比通常二沉池高,池容小,能使整个系统再较大得流量和浓度范围内稳定运行。污泥回流立即,降低污泥膨胀可能。缺点:结构尚待深入完善,运行也待深入完善。总而言之,任何一个方法,全部能达成除磷脱氮效果,且出水水质良好,但相对而言,SBR法一次性投资较少,占地面积较大,且后期运行费用高于氧化沟,厌氧池+氧化沟即使一次性投资较大

12、,但占地面积也不少,耗电量低,运行费用较低,产污泥量大,但构筑物多且复杂。一体化反应池科技含量高,投资省,但其工艺在中国还不完善。综合考虑本工程建设规模、进水特征、处理要求、运行费用和维护管理等情况,经技术经济比较、分析,确定采取倒置A2/O法生物处理工艺。6、工艺步骤选择二、污水厂设计计算书设计技术参数1、污水处理厂服务范围及建设规模:本工程所在地为某市新区,辖区基础设施齐全,含有承载大规模现代化工业发展能力。服务范围北起渭河,南至西潼高速路;东起渭清路,西至零河(见附图)。近期污水量为2104m3/d,远期污水量为4104m3/d,其中生活污水和工业废水所占百分比约为6:4。2、污水处理厂

13、进水水质:依据该污水处理厂工程可行性研究汇报和环境影响汇报书批复,并参考类似工程,确定污水处理厂进厂水质指标以下:COD :500mg/l BOD5:180mg/lSS : 420mg/l TN :60mg/lTP: 5mg/l T13CNH4+-N: 30mg/L 3、污水处理厂出水水质:依据国家现行城镇污水处理厂污染物排放标准(GB18918-)中一级B类标准,该污水处理厂工程可行性研究汇报及环境影响汇报书批复,考虑到接纳水体环境容量确定出厂水质指标为:COD60mg/l BOD520mg/l SS 20mg/l NH4+-N: 8mg/L TN20mg/L T-P 1.0 mg/L pH

14、:69 粪大肠菌群数 104个/l城市自然情况1、城市性质和规模计划面积18km2,人口4.5万人。2、地形、地貌、地质、地震该高新区地形南高北低,拟建场地距受纳水体渭河仅约350m,地貌属渭河南岸一级阶地,场地平坦。绝对高程在348.30m349.05m之间。场地域地下水位埋深12m左右,据区域水文地质资料,场地域地下水位年变幅小于1m,多年水位变幅3m左右。可不考虑地下水对基础腐蚀性。地基土对混凝土结构及钢筋混凝土结构中钢筋均无腐蚀性。拟建场地为非自重湿陷性场地,地基湿陷等级为级(轻微),按中国地震烈度区划图划分,基础地震烈度为八度。3、排水现实状况该区域为新计划建设开发区,依据总体计划,

15、将在开发区内主次干道上分别敷设雨水和污水管道,形成份流制雨、污水排水系统,在污水厂建设同时,排水管网将同时建设。排水系统输送能力能确保污水处理厂2万m3/d工程规模。4、气象工程场地属温暖带半湿润大陆性季风气候,含有冬长夏短,春秋温凉经典特征。四季分明,春季和冬季干旱多风,夏季炎热,降雨集中,秋季天气晴朗,日照充足。气温:年平均气温:13.5,极端最低气温:-15.8,极端最高气温:42.2,年平均相对湿度:7085%降雨:年平均降水量:577.4mm,日最大降水量:835.6mm,日最小降水量:301.0mm,年平均蒸发量:15241638mm风:冬季平均风速:1.8m/s,夏季平均风速:2

16、.2m/s,主导风向:东、东北冻土深度:最大冻土深度:36cm污水处理厂厂区概况该污水处理厂为新建污水厂,计划用地面积68亩。污水厂进水口在厂区西南角,进水污水管管底标高343.60m。污水经处理后出水靠重力流直接排入计划用地北侧渭河,该河流符合地表水环境质量标准中类标准。河水最高水位343.40m。水量:近期:2104m3/d=0.231 m3/s=231L/s 远期:4104m3/d=0.463 m3/s=463 L/s1、污水处理构筑物设计计算1.1、进水控制井计算 1、(1)进水管按远期计算,依据流量从给水排水管网系统查:设计流量q(L/s)在458.72545.92时,管径取1000

17、mm;粗糙系数为nm=0.014;最小坡度I=0.28 (2)出水管:设计流量按近期取,q(L/s)在225.50285.39时,管径取600mm;粗糙系数为nm=0.014;最小坡度为I=1.26 2、尺寸计算:平面草图以下:控制井中事故水量,即水力停留时间取60s ,则事故管管底标高为:600.463=27.78 m3 27.7823.92.2=3.2378m 取3.2m则:343.60+3.2=346.80m进水管管底标高为343.60m ,事故管管径为1000mm,最小坡度为0.61 厂距渭河350m;所以降落量为:3500.61 =0.2135m;则入河口处事故管管底标高为:346.

18、800.2135=346.59m剖面草图以下:1.2、粗格栅计算 设计中选择二组格栅,N=2组,每组格栅单独设置,每组格栅设计流量为近期水二分之一,即0.1155 m3/s.1、 格栅间隙数式中n格栅间隙数(个) Q1设计流量(m3/s) 格栅倾角(o) b格栅栅条间隙(m) h格栅栅前水深(m) v格栅过栅流速(m/s)设计中取h=0.4m,v=0.8m/s,b=0.02m, =600个 取17个2、 格栅宽度B=s(n-1)+bn 式中B格栅槽宽度(m)S每根格栅条宽度(m)设计中取S=0.01mB=0.01(17-1)+0.0217=0.5m3、 进水渠道渐宽部分长度式中L1 进水渠道渐

19、宽部分长度(m) B1进水明渠宽度(m) 1渐宽处角度(0),通常采取10o30o 设计中取B1=0.4m,1=20o 0.15m 4、 出水渠道渐窄部分长度 式中L2出水渠道渐窄部分长度(m) 2渐窄处角度(0),取20o 0.15m 5、 经过格栅水头损失式中 h1水头损失(m) 格栅条阻力系数,查表=2.42 k 格栅受污物堵塞时水头损失增大系数,通常取k=3m 6、 栅后明渠总高度H=h+h1+h2式中 H栅后明渠总高度(m) h2明渠超高(m),通常采取0.30.5m 设计中取h2=0.3m H=0.4+0.0815+0.30.78m7、格栅槽总长度 L=L1+L2+0.5+1.0+

20、H1/ tan式中 L格栅槽总长度(m) H1格栅明渠深度(m) L=0.15+0.15+0.5+1.0+0.7/tan602.2m8、 每日栅渣量 式中 W每日栅渣量(m3/d) W1每日每103m3污水栅渣量(m3/103m3污水), 通常采取0.040.06 m/103m3污水 设计中取W1=0.05 m3/103m3污水 =0.9980.2 m3/d 应采取机械除渣及皮带输送机或无轴输送机输送栅渣,采取机械栅渣打包机将栅渣打包,汽车运走。9、进水和出水渠道 城市污水经过DN900管道送入进水渠道,设计中取进水渠道宽度B1=0.5m,进水水深h=0.4m,出水渠道B2= B1=0.5m,

21、出水水深h=0.4m10、校核(1) 栅前流速:实际计算过水断面为:0.40.5=0.2则栅前流速为: 符合栅前流速在0.40.8m/s设计要求。(2)过栅流速:实际计算过水断面为:则过栅流速为: 符合过栅流速在0.61.0设计要求。11、计算草图以下:1.3、污水提升泵房1、 水泵选择设计水量为0 m3/d,选择用三台潜污泵(2用1备),则单台流量为 Q1=02=10000 m3/d=416.67 m3/h所需扬程为 10.57 m(见水力计算和高程部署) 选择250WS-450B型污水泵,参数以下:流量 m3/h扬程H/m转速/rmin-1轴功率p/kW电机功率p/kW效率/%质量排出口径

22、/4201173518.022797502002、 集水池(1)容积 按一台泵最大流量时6min出流量设计,则集水池有效容积V 42 m3(2)面积 取有效水深H为2m则面积F为 F=VH=422=21m2 集水池长度取5m,则宽度为4.2m,集水池平面尺寸为LB=54.2 保护水深取1m,则实际水深为3m3、 泵位及安装污水泵直接置于集水池内,经核实集水池面积大于污水泵安装要求。污水泵检修采取移动吊架。4、泵房草图以下: 1.4、和曝气沉砂池合建细格栅 设计中选择二组格栅,即N=2组,每组格栅和沉砂池合建,则每组格栅设计流量为近期水量二分之一,即0.1155 m3/s.1、 格栅间隙数 式中

23、n格栅间隙数(个) Q1设计流量(m3/s) 格栅倾角(o) b格栅栅条间隙(m) h格栅栅前水深(m) v格栅过栅流速(m/s)设计中取h=0.4m,v=1.0m/s,b=0.01m, =600个 工程中取27个2、 格栅宽度B=s(n-1)+bn 式中B格栅槽宽度(m)S每根格栅条宽度(m)设计中取S=0.01m B=0.01(27-1)+0.0127=0.53m3、 经过格栅水头损失式中 h1水头损失(m) 格栅条阻力系数,查表=2.42 k 格栅受污物堵塞时水头损失增大系数,通常取k=3m4、 栅后明渠总高度H=h+h1+h2式中 H栅后明渠总高度(m) h2明渠超高(m),通常采取0

24、.30.5m 设计中取h2=0.3mH=0.4+0.32+0.3=1.02m5、格栅槽总长度L=0.5+1.0+H1/ tan式中 L格栅槽总长度(m) H1格栅明渠深度(m) L=0.5+1.0+0.7/tan601.9m6、每日栅渣量式中 W每日栅渣量(m3/d) W1每日每103m3污水栅渣量(m3/103m3污水), 通常采取0.040.06 m/103m3污水 设计中取W1=0.05 m3/103m3污水 =0.9980.2 m3/d 应采取机械除渣及皮带输送机或无轴输送机输送栅渣,采取机械栅渣打包机将栅渣打包,汽车运走。7、 进水和出水渠道城市污水经过提升泵房送入进水渠道,格栅进水

25、渠道和格栅槽相连,格栅和沉砂池合建一起,格栅出水直接进入沉砂池,进水渠道宽度B1= B=0.53m,渠道水深h=0.4m 8、校核 (1) 栅前流速:实际计算过水断面:则栅前流速为: 符合栅前流速在0.40.8m/s设计要求。(2)过栅流速:实际计算过水断面为:则过栅流速为: 符合过栅流速在0.61.0设计要求。9、计算草图以下:1.5、曝气沉砂池设计中选择二组曝气沉砂池,N=2组,分别和格栅连接,每组沉砂池设计流量为0.1155 m3/s 。1、 沉砂池有效容积V=60Qt式中 V沉砂池有效容积(m3) Q设计流量(m3/s) t停留时间(min),通常采取13min 设计中取t=3min

26、V=6030.1155=20.79 m32、 水流过水断面面积 式中 A水流过水断面面积() V1水平流速(m/s),通常采取0.060.12 m/s设计中取V1=0.06m/s 1.933、 沉砂池宽度式中 B沉砂池宽度(m) h2沉砂池有效水深(m),通常采取23m设计中取h2=2m =0.965m 为施工方便取1m4、 沉砂池长度式中 L沉砂池长度(m)10.77m5、 每小时所需空气量式中 q每小时所需空气量(m3/h) d1 m3污水所需空气量(m3/ m3污水),通常采取0.10.2 m3/ m3污水. 设计中取 d=0.2 m3/ m3污水q=36000.11550.2=83.1

27、6 m3/h6、 沉砂室所需容积式中 Q污水流量(m3/s) X城市污水沉砂量(m3/ 106m3污水),通常采取30 m3/ 106m3污水 T清除沉砂时间(d),通常取12d 设计中取T=1d,X= 30m3/ 106m3污水0.6 m37、 每个沉砂斗容积式中 V0每个沉砂斗容积(m3) n沉砂斗数量(个) 设计中取 n=2个=0.3m38、 沉砂斗上口宽度式中 a沉砂斗上口宽度(m) h3沉砂斗高度(m) 沉砂斗壁和水面倾角(o),通常采取圆形沉砂池=55o,矩形沉砂池=60o a1沉砂斗底宽度(m),通常采取0.40.5m 设计中取h3=0.4m,=60o, a1=0.5m0.96m

28、9、 沉砂斗有效容积)式中 V0 沉砂斗有效容积(m3)0.22 m310、 格栅出水经过DN900mm管道送入沉砂池进水渠道,然后向两侧配水进入沉砂池,进水渠道水流速度式中 v1进水渠道水流速度(m/s) B1进水渠道宽度(m) H1进水渠道水深(m) 设计中取 B1=1.1m,H1=0.3m=0.35m/s11、 出水装置 出水采取沉砂池末端薄壁出水堰跌落出水,出水堰能够确保沉砂池内水位标高恒定,堰上水头式中 H1堰上水头(m) Q1沉砂池内设计流量(m3/s) m流量系数,通常采取0.40.5 b2堰宽(m),等于沉砂池宽度设计中取 m=0.4, b2=1m0.162m 出水堰后自由跌落

29、0.1m,出水流入出水槽,出水槽宽度B2=0.5m,出水槽水深h2=0.25m,水流流速v2=0.8m/s。采取出水管道在出水槽中部和出水槽连接,出水管道采取钢管,钢管DN=500mm,管内流速v2=0.9m/s。12、 排砂装置采取吸砂泵排砂,排砂泵设置在沉砂斗内,借助空气提升将沉砂排出沉砂池,吸砂泵管径DN=150mm13、 曝气沉砂池剖面图以下1.6、平流式初沉池设计中选择两组平流沉淀池,N=2组,每组平流沉淀池设计流量为0.1155 m3/s,从沉砂池流出来污水进入配水井,经过配水井分配流量后流入平流沉淀池。1、 沉淀池表面积式中 A沉淀池表面积() Q设计流量(m3/s) q表面负荷

30、m3/(m2h),通常采取1.53.0 m3/(m2h)设计中取q=2 m3/(m2h)=207.92、 沉淀部分有效水深 qt式中 h2沉淀部分有效水深(m) t沉淀时间(h),通常采取1.02.0h 设计中取 t=1h21=2m3、 沉淀部分有效容积=415.8 m34、 沉淀池长度式中 L沉淀池长度(m) v设计流量时水平流速(mm/s),通常采取v5mm/s 设计中取v=5mm/s=18m5、 沉淀池宽度式中L沉淀池宽度(m)=11.55m6、 沉淀池格数式中 n1沉淀池格数(个) b沉淀池分格每格宽度(m) 设计中取 b=2.5m=4.62个(取5个)7、 校核长宽比及长深比 长宽比

31、L/b=18/2.5=7.24(符合长宽比大于4要求,避免池内水流产生短流现象)。长深比L/h2=18/2=98(符合长深比812之间要求)8、 污泥部分所需容积(1)按设计人口计算式中 V污泥部分所需容积(m3) S每人每日污泥量L/(人d),通常采取0.30.8 L/(人d) T两次清除污泥间隔时间(d),通常采取重力排泥时,T=12d,采取机械排泥时,T=0.050.2d N设计人口(人) n沉淀池组数。 设计中取 S=0.6 L/(人d),采取重力排泥时,清除污泥间隔时间T=1d=13.5 m3(2)按去除水中悬浮物计算式中 Q平均污水流量(m3/s) C1进水悬浮物浓度(mg/L)

32、C2出水悬浮物浓度(mg/L),通常采取沉淀效率=40%60% K2生活污水量总改变系数r污泥容量(t/ m3),约为1p0污泥含水率(%)设计中取 T=1d, p0=97%,=50%, C2=100%-50% C1=0.5 C169.85 m39、 每格沉淀池污泥部分所需容积式中 每格沉淀池污泥部分所需容积(m3)=13.97m310、污泥斗容积 污泥斗设在沉淀池进水端,采取重力排泥,排泥管伸入污泥斗底部,为预防污泥斗底部积泥,污泥斗底部尺寸通常小于0.5m,污泥斗倾角大于60o式中 V1污泥斗容积(m3) 沉淀池污泥斗上口边长(m) 1沉淀池污泥斗下口边长(m),通常采取0.40.5m 污

33、泥斗高度(m) 设计中取=4m,=3m,1=0.5m=18.25 m313.97 m311、沉淀池总高度式中 H沉淀池总高度(m) h1沉淀池超高(m),通常采取0.30.5m h3缓冲层高度(m),通常采取0.3mh4污泥部分高度(m),通常采取污泥斗高度和池底坡度i=1%高度之和 设计中取 h4=3+0.01(18-4)=3.14m, h1=0.3m, h3=0.3m=5.74m12、进水配水井沉淀池分为2组,每组分为5格,每组沉淀池进水端设进水配水井,污水在配水井内平均分配,然后流进每组沉淀池。配水井内中心管直径式中 D配水井内中心管直径(m) v2配水井内中心管上升流速(m/s),通常

34、采取v20.6 m/s 设计中取 v2=0.7m/s0.648m配水井直径式中配水井直径(m) v3配水井内污水流速(m/s),通常取v=0.20.4m/s 设计中取v3=0.3m/s1.18m13、 进水渠道沉淀池分为两组,每组沉淀池进水端设进水渠道,配水井接出DN500进水管从进水渠道中部汇入,污水沿进水渠道向两侧流动,经过潜孔进入配水渠道,然由穿孔花墙流入沉淀池。式中进水渠道水流速度(m/s),通常采取0.4m/s进水渠道宽度(m)进水渠道水深(m),:通常采取0.52.0设计中取 =0.5 m, =0.4=0.5775m/s0.4m/s14、 进水穿孔花墙进水采取配水渠道经过穿孔花墙进

35、水,配水渠道宽0.4m,有效水深0.5m,穿孔花墙开孔总面积为过水断面面积6%20%,则过孔流速为式中 v2穿孔花墙过孔流速(m/s),通常采取0.050.15m/s B2孔洞宽度(m) h2孔洞高度(m) n1孔洞数量(个) 设计中取B2=0.2m,h2=0.2m,n1=8个0.072m/s15、 出水堰沉淀池出水经过出水堰跌落进入出水渠道,然后汇入出水管道排走。出水堰采取矩形薄壁堰,堰后自由跌落水头0.10.15m,堰上水深H为式中 m0流量系数,通常采取0.45 b出水堰宽度(m) H出水堰顶水深(m)H=0.028m 出水堰后自由跌落采取0.1m,则出水堰水头损失为0.12816、 出

36、水渠道 沉淀池出水端设出水渠道,出水管和出水渠道连接,将污水送至集水井。式中 v3出水渠道水流速度(m/s),通常采取v30.4m/s B3出水渠道宽度(m) H3出水渠道水深(m),B3 :H3通常采取0.52.0 设计中取B3=0.5m,H3=0.4m=0.5775m/s0.4m/s 出水管道采取钢管,管径DN=800mm,管内流速v=0.6m/s,水力坡降i=2.3717、 进水挡板、出水挡板沉淀池设进水挡板和出水挡板,进水挡板距进水穿孔花墙0.5m,挡板高出水面0.3m,深入水下0.6m。出水挡板距出水堰0.5m,挡板高出水面0.3m,深入水下0.4m。在出水挡板处设一个浮渣搜集装置,

37、用来搜集拦截浮渣。18、 排泥管沉淀池采取重力排泥,排泥管直径DN=250mm,排泥时间t4=20min,排泥管流速v4=0.8m/s排泥管伸入污泥斗底部。排泥管上端高出水面0.3m,便于清通和排气。19、 刮泥装置沉淀池采取行车式刮泥机,刮泥机设于池顶,刮板深入池底,刮泥机行走时将污泥推入污泥斗内。20、 平流沉淀池剖面图以下1.7、A2/O生物反应池1.7.1设计参数1、水力停留时间A2/O工艺水力停留时间t通常采取68h,设计中取t=8h2、曝气池内活性污泥浓度曝气池内活性污泥浓度XV通常采取4000mg/L,设计中取XV=3000mg/L3、回流污泥浓度式中 Xr回流污泥浓度(mg/L

38、)SVI污泥指数,通常采取100 r系数,通常采取r=1.24、污泥回流比式中 R污泥回流比 回流污泥浓度(mg/L),=0.751=9000mg/L 解得:R=0.55、 TN去除率式中 eTN去除率(%) S1进水TN浓度(mg/L) S2出水TN浓度(mg/L) 设计中取S2=20mg/L=66.67%6、 内回流倍数式中 内回流倍数=2.0003,设计中取为200% 1.7.2 平面尺寸计算 1、总有效容积式中 V总有效容积(m3) Q进水流量(m3/d),按平均流量计 t水力停留时间(d) 设计中取Q=0 m3/d6666.67 m3 缺氧、厌氧、好氧各段内水力停留时间比值为1:1:

39、3,则每段水力停留时间分别为: 缺氧池内水力停留时间t1=1.6h 厌氧池内水力停留时间t2=1.6h 好氧池内水力停留时间t3=4.8h 2、平面尺寸 曝气池总面积式中 A曝气池总面积() h曝气池有效水深(m) 设计中取h=3.2m2083.33 每组曝气池面积式中每座曝气池面积() N曝气池个数(个)1041.67 每组曝气池共设5廊道,第1廊道为缺氧段,第2廊道为厌氧段,后3个廊道为好氧段,每个廊道宽取5m,则廊道长式中 L曝气池每个廊道长(m) b每个廊道宽度(m) n廊道数 设计中取b=5m,n=541.67m A2/O池平面部署图以下:1.7.3进出水系统1、曝气池进水设计初沉池

40、来水经过DN900mm管道送入A2/O池首端进水渠道。在进水渠道内,水流分别流向两侧,从缺氧段进入,进水渠道宽0.8m,渠道内水深0.6m,则渠道内最大水流速度为式中 渠道内最大水流速度(m/s) b1进水渠道宽度(m) h1进水渠道有效宽度(m) 设计中取b1=0.8m,h1=0.6m0.24m/s 反应池采取潜孔进水,孔口面积式中 F每座反应池所需孔口面积() v2孔口流速(m/s),通常采取0.21.5m/s 设计中取v2=0.2m/s=0.5775 设每个孔口尺寸为0.40.4m,则孔口数为式中 n每座曝气池所需孔口数(个) f每个孔口面积()3.6 工程中取4个 孔口部署图以下:2、曝气池出水设计A2/O池出水采取矩形薄壁堰,跌落水头,堰上水头式中 H堰上水头(m) Q每座反应池出水量(m3/s),指污水最大流量(0.231 m3/s)和回流污泥量、回流量之和(0.231 250%m3/s) m流量系数,通常采取0.40.5 b堰宽(m);和反应池宽度相等 设计中取m=0.4,b=5mm,设计中取0.13m A2/O反应池最大出水流量为(0.231+0.231250%)=0.8085 m3/s,出水管管径采取DN1500mm,送往二沉池,管内流速为0.8 m/s。

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 毕业论文/毕业设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服