1、九年级数学下册 第1章 二次函数知识归纳湘教版九年级数学下册 第1章 二次函数知识归纳湘教版年级:姓名:4二次函数二次函数及其图像 二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为y=ax2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。一般的,自变量x和因变量y之间存在如下关系: 一般式y=ax2+bx+c(a0,a、b、c为常数),顶点坐标为(-b/2a,(b2-4ac)/4a) ; 顶点式y=a(x-h)2+k(a0,a、h、k为常数)或y=a(x-h)+k(a0,a、h、k为常数),顶点坐标为(h,k)对称轴为x=h
2、,顶点的位置特征和图像的开口方向与函数ax的图像相同,有时题目会指出让你用配方法把一般式化成顶点式; 交点式y=a(x-x1)(x-x2) 仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线 ; 重要概念:a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。 在平面直角坐标系中作出二次函数y=x2的平方的图像, 可以看出,二次函数的图像是一条永无止境的抛物线。 不同的二次函数图像如果所画图形准确无误,那么二次函数将是由一般式平移得到的。 轴对称1.抛物线是轴对称图形
3、。对称轴为直线x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 顶点2.抛物线有一个顶点P,坐标为P ( -b/2a ,4ac-b2)/4a ) 当-b/2a=0时,P在y轴上;当= b2-4ac=0时,P在x轴上。 开口3.二次项系数a决定抛物线的开口方向和大小。 当a0时,抛物线向上开口;当a0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 决定对称轴位置的因素4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是- b/2
4、a0, 所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异,即当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时 (即ab 0 ),对称轴在y轴右。 事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的 斜率k的值。可通过对二次函数求导得到。 决定抛物线与y轴交点的因素5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 抛物线与x轴交点个数6.抛物线与x轴交点个数 = b2-4ac0时,抛物线与x轴有2个交点。 = b2-4ac=0时,抛物线与x轴有1个交点。 = b2-4ac0时,抛物线与x轴没有交点。当a0时,函数在x=
5、-b/2a处取得最小值,当a0时,函数在x= -b/2a处取得最大值当b=0时,抛物线的对称轴是y轴,7.特殊值的形式 当x=时 y=a+b+c 当x=-1时 y=a-b+c 当x=2时 y=4a+2b+c 当x=-2时 y=4a-2b+c 用函数观点看一元二次方程 1. 如果抛物线与x轴有公共点,公共点的横坐标是,那么当时,函数的值是0,因此就是方程的一个根。 2. 二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。实际问题与二次函数 在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。