1、八年级数学下册 第十七章 勾股定理17.2 勾股定理的逆定理说课稿1 新人教版八年级数学下册 第十七章 勾股定理17.2 勾股定理的逆定理说课稿1 新人教版年级:姓名:4勾股定理逆定理说课稿 一、知识背景 在知识体系上,学生已经学习了勾股定理,经历了勾股定理的探究的过程,积累了相关的数学活动经验,这就具备了勾股定理逆定理的探究条件,通过勾股定理逆定理的探究,对培养学生的分析思维能力,发展推理能力大有裨益,其中蕴涵着类比、转化,从特殊到一般的思想方法,对学生的可持续发展更有不可低估的作用,我所简述的是第一课时的内容。 二、教学目标 教学目标既是教学的出发点,也是归宿,或者说:它是教学的灵魂,支配
2、着教学过程,并规定着教与学的方向,教学目标的制定和落实是实施课堂教学的关键。我认为一个好的教学目标应具备三个基本要素;行为主体、行为动词、表现程度。具体的说行为主体必须是学生而不是教师。第二、目标的制定主要是为了后续评价行为,因此行为动词尽可能要清晰可把握而不能含糊其词,否则无法确定教学的正确方向,教学过程的可操作性不强。第三、表现程度是用以评价学生的学习表现或学习效果所达到的程度,基于以上理念参考数学课程标准制定教学目标: 1、知识与技能:理解勾股定理逆定理的证明方法,掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形。 2、数学思考:通过勾股定理的逆定理的探索,经
3、历知识发生、发展形成的过程,体会数形结合的思想方法。 3、解决问题:体会数形结合方法在问题解决中的作用,并能利用勾股定理的逆定理解决相关问题。 4、情感态度:通过一系列的探究性问题,渗透与人交流合作的意识,感受定理与逆定理之间和谐及辩证统一的关系。 三、教学重点,难点 重点:探索勾股定理逆定理和运用。 难点:勾股定理的逆定理的证明 数学课程标准中提出:要让学生经历知识发生发展的全过程。依据此理念,我将重点确定为:探索勾股定理的逆定理和运用。探索勾股定理的逆定理关键在于转化三角形为全等,如何根据需要构造全等三角形,这需要学生思维有极强的跳跃性,对学生是一个挑战,要有极强的创新精神,所以将本节课难
4、点确定为:勾股定理的逆定理的证明 四、教学理念 本节课以数学活动为载体,组织教学,以学生实践活动为主体,沟通活动单元、数学思想、思维方式,使不同的学生在数学活动中均得到发展,探究活动应围绕四个单元活动展开:活动1:情景设疑,引出课题。活动2:实践操作、大胆猜想。活动3:推理验证,深入剖析。活动4:反思应用,创新升华。 在教学活动单元设计中,强调教学方法的多样性以及与教学模式、活动单元的融合,我主要采用以下几种教法。1.分层导学法,2.情景教学法。3.启发教学法。活动中给学生提供多种器官共用的机会,突出数学中活动和活动中数学。学生主要采用小组合作的学习方式,让他们遵循问题情景-观察猜想-探究验证
5、-解释应用的主线进行学习。关注他们在活动中的体验感受,即掌握必须的知识与技能,又获得方法和能力,更在活动中不断成长,体现新课程发展的三维目标要求。 五、教学流程 (一)创设问题情境,引入新课: 在这一环节中,我设计了这样一个情境,多媒体动画展示,米老鼠来到了数学王国里的三角形城堡,要求只利用一根绳子,构造一个直角三角形,方可入城,这可难坏了米老鼠,你能帮它想办法吗?预测大多数同学会无从下手,这样引出课题。只有学习了勾股定理的逆定理后,大家都能帮助米老鼠进入城堡,我认为:“大疑而大进”这样做,充分调动学习内容,激发求知欲望,动漫演示,又有了很强的趣味性,做到课之初,趣已生,疑已质。 (二)实践猜
6、想 本环节要围绕以下几个活动展开: 1、算一算:求以线段a ,b为直角边的直角三角形的斜边c长。 1a=3 b=4 2a=5 b=12 3a=2.5 b=6 4a=6 b=8 2、猜一猜,以下列线段长为三边的三角形形状 13cm 4cm 5cm 25cm 12cm 13cm 32.5cm 6cm 6.5cm 46cm 8cm 10cm 3、摆一摆利用方便筷来操作问题2,利用量角器来度量,验证问题2的发现。 4、用恰当的语言叙述你的结论 在算一算中学生复习了勾股定理,猜一猜和摆一摆中学生小组合作动手实践,在问题1的基础上做出合理的推测和猜想,这样分层递进找到了学生思维的最近发展区,面向不同层次的
7、每一名学生,每一名学生都有参与数学活动的机会,最后运用恰当的语言表述,得到了勾股定理的逆定理。在整个过程的活动中,教师给学生充分的时间和空间,教师以平等的身份参与小组活动中,倾听意见,帮助指导学生的实践活动。学生的摆一摆的过程利用实物投影仪展示,在活动中教师关注;1)学生的参与意识与动手能力。2)是否清楚三角形三边长度的平方关系是因,直角三角形是果。既先有数,后有形。3)数形结合的思想方法及归纳能力。 (三)推理证明 八年级正是学生由实验几何向推理几何过渡的重要时期,多数学生难以由直观到抽象这一思维的飞跃,而勾股定理的逆定理的证明又不同于以往的几何图形的证明,需要构造直角三角形才能完成,而构造
8、直角三角形就成为解决问题的关键,直接抛给学生证明,无疑会石沉大海,所以,我采用分层导进的方法,以求一石激起千层浪。 1. 三边长度为3cm,4cm,5cm的三角形与以3cm,4cm为直角边的直角三角形之间有什么关系?你是怎样得到的?请简要说明理由? 2.ABC三边长a,b,c满足a2+b2=c2 与a,b为直角三角形之间有何关系?试说明理由? 为了较好完成教师的诱导,教师要给学生独立思考的时间,要给学生在组内交流个别意见的时间,教师要深入小组指导与帮助,并利用实物投影仪展示小组成果,取得阶段性成果再探究问题2.这样由特殊到一般,凸显了构造直角三角形这一解决问题的关键,让他们在不断的探究过程中,
9、亲自体验参与发现创造的愉悦,有效的突破了难点。培养良好的数学学习习惯对学生的可持续发展是非常重要的,归纳完定理后,与学生一起分析定理的题设与结论,得出解题中的书写格式。 (四)引例解析:通过引例的解决,巩固定理,这是个开命题,能更好地体现不同的解题策略。教师介绍古埃及和我国古代大禹治水都是利用这种方法确定直角的。让学生感受勾股定理丰富的文化内涵,体会人文精神,激发学好数学为国争光的思想。 (五)分层训练,能力升级,以闯关的形式进行,深化学习内容遵循巩固和发展相结合的原则,兼顾不同层次的学生,满足多样化学习的需要。最后归纳反思。启发学生交流知识,能力情感的收获与体验。在有针对性、有层次布置作业。 六、设计说明 本节课立足于创新和学生的可持续发展,把教学内容分解为一系列富有探究性的问题。让学生在解决问题的过程总共经历知识的发生、发展和形成的过程,把知识的发现权交给学生,让他们在获得知识的过程中体会与人合作的重要,体验成功的喜悦,真正体现学生是学习的主人,教师只是参与者、合作者、引导者。