1、第1章 绪 论2.(1)(2)(3)3.(1)A(2)C(3)C5.计算下列程序中x=x+1的语句频度 for(i=1;i=n;i+)for(j=1;j=i;j+) for(k=1;k=j;k+) x=x+1; 【解答】x=x+1的语句频度为:T(n)=1+(1+2)+(1+2+3)+(1+2+n)=n(n+1)(n+2)/66.编写算法,求 一元多项式pn(x)=a0+a1x+a2x2+.+anxn的值pn(x0),并确定算法中每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能小,规定算法中不能使用求幂函数。注意:本题中的输入为ai(i=0,1,n)、x和n,输出为Pn(x0)。
2、 算法的输入和输出采用下列方法(1)通过参数表中的参数显式传递(2)通过全局变量隐式传递。讨论两种方法的优缺点,并在算法中以你认为较好的一种实现输入输出。【解答】(1)通过参数表中的参数显式传递 优点:当没有调用函数时,不占用内存,调用结束后形参被释放,实参维持,函数通用性强,移置性强。 缺点:形参须与实参对应,且返回值数量有限。(2)通过全局变量隐式传递 优点:减少实参与形参的个数,从而减少内存空间以及传递数据时的时间消耗 缺点:函数通用性降低,移植性差算法如下:通过全局变量隐式传递参数PolyValue() int i,n;float x,a,p; printf(“nn=”); scanf
3、(“%f”,&n); printf(“nx=”); scanf(“%f”,&x);for(i=0;in;i+) scanf(“%f ”,&ai); /*执行次数:n次 */ p=a0; for(i=1;i=n;i+) p=p+ai*x; /*执行次数:n次*/ x=x*x;printf(“%f”,p); 算法的时间复杂度:T(n)=O(n)通过参数表中的参数显式传递float PolyValue(float a , float x, int n) float p,s;int i;p=x; s=a0;for(i=1;inext=S;B P-next= P-next-next;C P-next=
4、S-next;D S-next= P-next;E S-next= L;F S-next= NULL;G Q= P;H while (P-next!=Q) P=P-next;I while (P-next!=NULL) P=P-next;J P= Q;K P= L;L L= S;M L= P;(3) D(4) D(5) D(6) A7试分别以不同的存储结构实现单线表的就地逆置算法,即在原表的存储空间将线性表(a1,a2,an)逆置为(an,an-1,a1)。【解答】(1)用一维数组作为存储结构 void invert(SeqList *L, int *num) int j; ElemType
5、tmp;for(j=0;jnext =NULL) return; /*链表为空*/ p=L-next; q=p-next; p-next=NULL; /* 摘下第一个结点,生成初始逆置表 */while(q!=NULL) /* 从第二个结点起依次头插入当前逆置表 */ r=q-next;q-next=L-next;L-next=q;q=r; 11将线性表A=(a1,a2,am), B=(b1,b2,bn)合并成线性表C, C=(a1,b1,am,bm,bm+1,.bn) 当mn时,线性表A、B、C以单链表作为存储结构,且C表利用A表和B表中的结点空间构成。注意:单链表的长度值m和n均未显式存储
6、。【解答】算法如下:LinkList merge(LinkList A, LinkList B, LinkList C) Node *pa, *qa, *pb, *qb, *p; pa=A-next; /*pa表示A的当前结点*/ pb=B-next; p=A; / *利用p来指向新连接的表的表尾,初始值指向表A的头结点*/ while(pa!=NULL & pb!=NULL) /*利用尾插法建立连接之后的链表*/ qa=pa-next; qb=qb-next; p-next=pa; /*交替选择表A和表B中的结点连接到新链表中;*/p=pa;p-next=pb;p=pb; pa=qa;pb=
7、qb;if(pa!=NULL) p-next=pa; /*A的长度大于B的长度*/ if(pb!=NULL) p-next=pb; /*B的长度大于A的长度*/C=A; Return(C);实习题约瑟夫环问题约瑟夫问题的一种描述为:编号1,2,n的n个人按顺时针方向围坐一圈,每个人持有一个密码(正整数)。一开始任选一个报数上限值m,从第一个人开始顺时针自1开始顺序报数,报到m时停止报数。报m的人出列,将他的密码作为新的m值,从他在顺时针方向上的下一个人开始重新从1报数,如此下去,直至所有的人全部出列为止。试设计一个程序,求出出列顺序。利用单向循环链表作为存储结构模拟此过程,按照出列顺序打印出各
8、人的编号。例如m的初值为20;n=7,7个人的密码依次是:3,1,7,2,4,8,4,出列顺序为6,1,4,7,2,3,5。【解答】算法如下:typedef struct Nodeint password;int num;struct Node *next; Node,*Linklist;void Josephus() Linklist L; Node *p,*r,*q; int m,n,C,j; L=(Node*)malloc(sizeof(Node); /*初始化单向循环链表*/ if(L=NULL) printf(n链表申请不到空间!);return; L-next=NULL; r=L;
9、 printf(请输入数据n的值(n0):); scanf(%d,&n); for(j=1;jpassword=C; p-num=j; r-next=p; r=p; r-next=L-next;printf(请输入第一个报数上限值m(m0):); scanf(%d,&m); printf(*n); printf(出列的顺序为:n); q=L; p=L-next; while(n!=1) /*计算出列的顺序*/ j=1; while(jnext; j+; printf(%d-,p-num); m=p-password; /*获得新密码*/ n-; q-next=p-next; /*p出列*/ r
10、=p; p=p-next; free(r); printf(%dn,p-num);第3章 限定性线性表 栈和队列第三章答案1按3.1(b)所示铁道(两侧铁道均为单向行驶道)进行车厢调度,回答:(1) 如进站的车厢序列为123,则可能得到的出站车厢序列是什么?(2) 如进站的车厢序列为123456,能否得到435612和135426的出站序列,并说明原因(即写出以“S”表示进栈、“X”表示出栈的栈序列操作)。【解答】(1)可能得到的出站车厢序列是:123、132、213、231、321。(2)不能得到435612的出站序列。因为有S(1)S(2)S(3)S(4)X(4)X(3)S(5)X(5)S
11、(6)S(6),此时按照“后进先出”的原则,出栈的顺序必须为X(2)X(1)。能得到135426的出站序列。因为有S(1)X(1)S(2)S(3)X(3)S(4)S(5)X(5)X(4)X(2)X(1)。3 给出栈的两种存储结构形式名称,在这两种栈的存储结构中如何判别栈空与栈满?【解答】(1)顺序栈 (top用来存放栈顶元素的下标)判断栈S空:如果S-top=-1表示栈空。判断栈S满:如果S-top=Stack_Size-1表示栈满。(2) 链栈(top为栈顶指针,指向当前栈顶元素前面的头结点)判断栈空:如果top-next=NULL表示栈空。判断栈满:当系统没有可用空间时,申请不到空间存放要
12、进栈的元素,此时栈满。 4 照四则运算加、减、乘、除和幂运算的优先惯例,画出对下列表达式求值时操作数栈和运算符栈的变化过程:A-B*C/D+EF【解答】5 写一个算法,判断依次读入的一个以为结束符的字母序列,是否形如序列1&序列2的字符序列。序列1和序列2中都不含&,且序列2是序列1 的逆序列。例如,a+b&b+a是属于该模式的字符序列,而1+3&3-1则不是。【解答】算法如下: int IsHuiWen() Stack *S; Char ch,temp; InitStack(&S); Printf(“n请输入字符序列:”); Ch=getchar();While( ch!=&) /*序列1入
13、栈*/ Push(&S,ch); ch=getchar();do /*判断序列2是否是序列1的逆序列*/ ch=getchar(); Pop(&S,&temp); if(ch!= temp) /*序列2不是序列1的逆序列*/ return(FALSE); printf(“nNO”); while(ch!= & !IsEmpty(&S)if(ch = = & IsEmpty(&S) return(TRUE); printf(“nYES”); /*序列2是序列1的逆序列*/else return(FALSE); printf(“nNO”); /*IsHuiWen()*/8 要求循环队列不损失一个空
14、间全部都能得到利用,设置一个标志tag,以tag为0或1来区分头尾指针相同时的队列状态的空与满,请编写与此相应的入队与出队算法。【解答】入队算法:int EnterQueue(SeqQueue *Q, QueueElementType x) /*将元素x入队*/ if(Q-front=Q-front & tag=1) /*队满*/ return(FALSE); if(Q-front=Q-front & tag=0) /*x入队前队空,x入队后重新设置标志*/ tag=1;Q-elememtQ-rear=x;Q-rear=(Q-rear+1)%MAXSIZE; /*设置队尾指针*/Return(
15、TRUE); 出队算法: int DeleteQueue( SeqQueue *Q , QueueElementType *x) /*删除队头元素,用x返回其值*/if(Q-front=Q-rear & tag=0) /*队空*/ return(FALSE);*x=Q-elementQ-front;Q-front=(Q-front+1)%MAXSIZE; /*重新设置队头指针*/if(Q-front=Q-rear) tag=0; /*队头元素出队后队列为空,重新设置标志域*/Return(TUUE); 第4章 串第四章答案1 设s=I AM A STUDENT,t=GOOD, q=WORKER
16、。给出下列操作的结果:【解答】StrLength(s)=14;SubString(sub1,s,1,7) sub1=I AM A ;SubString(sub2,s,7,1) sub2= ;StrIndex(s,4,A)=6;StrReplace(s,STUDENT,q); s=I AM A WORKER;StrCat(StrCat(sub1,t),StrCat(sub2,q) sub1=I AM A GOOD WORKER。 2编写算法,实现串的基本操作StrReplace(S,T,V)。 【解答】算法如下:int strReplace(SString S,SString T, SStrin
17、g V)/*用串V替换S中的所有子串T */ int pos,i; pos=strIndex(S,1,T); /*求S中子串T第一次出现的位置*/ if(pos = = 0) return(0); while(pos!=0) /*用串V替换S中的所有子串T */ switch(T.len-V.len) case 0: /*串T的长度等于串V的长度*/ for(i=0;ichpos+i=V.chi; case 0: /*串T的长度大于串V的长度*/ for(i=pos+t.ien;ilen;i-) /*将S中子串T后的所有字符 S-chi-t.len+v.len=S-chi; 前移T.len-V
18、.len个位置*/ for(i=0;ichpos+i=V.chi; S-len=S-len-T.len+V.len; case len-T.len+V.len)len-T.len+V.len;i=pos+T.len;i-) S-chi=S-chi-T.len+V.len; for(i=0;ichpos+i=V.chi; S-len=S-len-T.len+V.len; else /*替换后串长MAXLEN,但串V可以全部替换*/ if(pos+V.len=pos+T.len; i-) S-chi=s-chi-T.len+V.len for(i=0;ichpos+i=V.chi; S-len=M
19、AXLEN; else /*串V的部分字符要舍弃*/ for(i=0;ichi+pos=V.chi; S-len=MAXLEN; /*switch()*/pos=StrIndex(S,pos+V.len,T); /*求S中下一个子串T的位置*/*while()*/ return(1);/*StrReplace()*/ 第五章 数组和广义表第五章答案1.假设有6行8列的二维数组A,每个元素占用6个字节,存储器按字节编址。已知A的基地址为1000,计算:(1) 数组A共占用多少字节; (288)(2) 数组A的最后一个元素的地址; (1282)(3) 按行存储时,元素A36的地址; (1126)(
20、4) 按列存储时,元素A36的地址; (1192)4.设有三对角矩阵Ann,将其三条对角线上的元素逐行的存于数组B1.3n-2中,使得Bk=aij,求:(1)用i,j表示k的下标变换公式;(2)用k表示i、j的下标变换公式。【解答】(1)k=2(i-1)+j(2) i=k/3+1, j=k/3+k%3 ( 取整,%取余)5.在稀疏矩阵的快速转置算法5.2中,将计算positioncol的方法稍加改动,使算法只占用一个辅助向量空间。【解答】算法(一) FastTransposeTSMatrix(TSMartrix A, TSMatrix *B) /*把矩阵A转置到B所指向的矩阵中去,矩阵用三元组
21、表表示*/int col,t,p,q;int positionMAXSIZE;B-len=A.len; B-n=A.m; B-m=A.n;if(B-len0) position1=1; for(t=1;t=A.len;t+) positionA.datat.col+1+; /*positioncol存放第col-1列非零元素的个数, 即利用poscol来记录第col-1列中非零元素的个数*/*求col列中第一个非零元素在B.data 的位置,存放在positioncol中*/for(col=2;col=A.n;col+) positioncol=positioncol+positioncol-
22、1; for(p=1;pdataq.row=A.datap.col; B-dataq.col=A.datap.row; B-dataq.e=A.datap.e; Positioncol+;算法(二)FastTransposeTSMatrix(TSMartrix A, TSMatrix *B) int col,t,p,q;int positionMAXSIZE;B-len=A.len; B-n=A.m; B-m=A.n;if(B-len0) for(col=1;col=A.n;col+) positioncol=0; for(t=1;t0;col-) t=t-positioncol; posit
23、ioncol=t+1;for(p=1;pdataq.row=A.datap.col; B-dataq.col=A.datap.row; B-dataq.e=A.datap.e; Positioncol+;8.画出下面广义表的两种存储结构图示: (a), b), ( ), d), (e, f)【解答】第一种存储结构 第二种存储结构9.求下列广义表运算的结果:(1) HEAD(a,b),(c,d); (a,b)(2) TAIL(a,b),(c,d); (c,d) (3) TAILHEAD(a,b),(c,d); (b)(4) HEADTAILHEAD(a,b),(c,d); b(5) TAILHE
24、ADTAIL(a,b),(c,d); (d)第六章第六章答案6 1分别画出具有3个结点的树和3个结点的二叉树的所有不同形态。【解答】具有3个结点的树 具有3个结点的二叉树6.3已知一棵度为k的树中有n1个度为1的结点,n2个度为2的结点,nk个度为k的结点,则该树中有多少个叶子结点?【解答】设树中结点总数为n,则n=n0 + n1 + + nk树中分支数目为B,则B=n1 + 2n2 + 3n3 + + knk因为除根结点外,每个结点均对应一个进入它的分支,所以有n= B + 1即n0 + n1 + + nk = n1 + 2n2 + 3n3 + + knk + 1由上式可得叶子结点数为:n0
25、 = n2 + 2n3 + + (k-1)nk + 16.5已知二叉树有50个叶子结点,则该二叉树的总结点数至少应有多少个?【解答】n0表示叶子结点数,n2表示度为2的结点数,则n0 = n2+1 所以n2= n0 1=49,当二叉树中没有度为1的结点时,总结点数n=n0+n2=99 6.6 试分别找出满足以下条件的所有二叉树:(1) 前序序列与中序序列相同;(2) 中序序列与后序序列相同;(3) 前序序列与后序序列相同。【解答】(1) 前序与中序相同:空树或缺左子树的单支树;(2) 中序与后序相同:空树或缺右子树的单支树;(3) 前序与后序相同:空树或只有根结点的二叉树。6.9 假设通讯的电
26、文仅由8个字母组成,字母在电文中出现的频率分别为:0.07,0.19,0.02,0.06,0.32,0.03,0.21,0.10请为这8个字母设计哈夫曼编码。【解答】 构造哈夫曼树如下:哈夫曼编码为:I1:11111 I5:1100 I2:11110 I6: 10I3:1110 I7: 01 I4:1101 I8: 006.11画出如下图所示树对应的二叉树。【解答】6.16分别写出算法,实现在中序线索二叉树T中查找给定结点*p在中序序列中的前驱与后继。在先序线索二叉树T中,查找给定结点*p在先序序列中的后继。在后序线索二叉树T中,查找给定结点*p在后序序列中的前驱。(1)找结点的中序前驱结点B
27、iTNode *InPre (BiTNode *p)/*在中序线索二叉树中查找p的中序前驱结点,并用pre指针返回结果*/ if (p-Ltag= =1) pre = p-LChild; /*直接利用线索*/ else /*在p的左子树中查找“最右下端”结点*/ for ( q=p-LChild; q-Rtag= =0; q=q-RChild); pre = q; return (pre); (2)找结点的中序后继结点BiTNode *InSucc (BiTNode *p)/*在中序线索二叉树中查找p的中序后继结点,并用succ指针返回结果*/ if (p-Rtag= =1) succ = p
28、-RChild; /*直接利用线索*/ else /*在p的右子树中查找“最左下端”结点*/ for ( q=p-RChild; q-Ltag= =0; q=q-LChild); succ= q; return (succ); (3) 找结点的先序后继结点BiTNode *PreSucc (BiTNode *p)/*在先序线索二叉树中查找p的先序后继结点,并用succ指针返回结果*/ if (p-Ltag= =0) succ = p-LChild; else succ= p-RChild; return (succ); (4) 找结点的后序前驱结点BiTNode *SuccPre (BiTNo
29、de *p)/*在后序线索二叉树中查找p的后序前驱结点,并用pre指针返回结果*/ if (p-Ltag= =1) pre = p-LChild; else pre= p-RChild; return (pre); 6.20已知二叉树按照二叉链表方式存储,利用栈的基本操作写出先序遍历非递归形式的算法。【解答】Void PreOrder(BiTree root) /*先序遍历二叉树的非递归算法*/ InitStack(&S); p=root; while(p!=NULL | !IsEmpty(S) ) if(p!=NULL) Visit(p-data);push(&S,p);p=p-Lchild
30、; else Pop(&S,&p); p=p-RChild;6.26二叉树按照二叉链表方式存储,编写算法将二叉树左右子树进行交换。【解答】 算法(一)Void exchange ( BiTree root ) p=root; if ( p-LChild != NULL | p-RChild != NULL ) temp = p-LChild;p-LChild = p-RChild;p-RChild = temp;exchange ( p-LChild );exchange ( p-RChild );算法(二)Void exchange ( BiTree root ) p=root; if (
31、p-LChild != NULL | p-RChild != NULL ) exchange ( p-LChild );exchange ( p-RChild ); temp = p-LChild;p-LChild = p-RChild;p-RChild = temp; 第八章第八章答案81 【解答】 5ASLsucc=(1+2X2+3X4+4X3)/10=2.9 8.5 【解答】(1) ASLSUCC=(1+2 X2+3 X3+4X3+5X2+6)/12=3.5(2) 排序为:Apr,Aug,Dec,Feb,Jan,July,June,Mar,May,Nov,Oct,Sep折半查找ASLSUCC=(1+2 X2+3 X4+4X5)/12=37/12 8.12 【解答】ASLSUCC=(1 X4+2 X3+6)/8=2ASLUNSUCC=(2+1+8+7+6+5+4+3+2+1+1)/11=40/1116