1、28 / 28 专题之一 牛顿第二定律牛顿第二定律1.定律的表述 物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,既F=ma (其中的F和m、a必须相对应)特别要注意表述的第三句话。因为力和加速度都是矢量,它们的关系除了数量大小的关系外,还有方向之间的关系。明确力和加速度方向,也是正确列出方程的重要环节。 若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不是物体的实际加速度。2.应用牛顿第二定律解题的步骤 明确研
2、究对象。可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。设每个质点的质量为mi,对应的加速度为ai,则有:F合=m1a1+m2a2+m3a3+mnan对这个结论可以这样理解:先分别以质点组中的每个物体为研究对象用牛顿第二定律:F1=m1a1,F2=m2a2,Fn=mnan,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现的,其矢量和必为零,所以最后实际得到的是该质点组所受的所有外力之和,即合外力F。 对研究对象进行受力分析。(同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。 若研究对象在不共线的两个力作用
3、下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。 当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。 解题要养成良好的习惯。只要严格按照以上步骤解题,同时认真画出受力分析图,那么问题都能迎刃而解。AB F3.应用举例例1如图所示,mA=1kg,mB=2kg,A、B间静摩擦力的最大值是5N,水平面光滑。用水平力F拉B,当拉力大小分别是F=10N和F=20N时,A、B的加速度各多大?解:先确定临界值,即刚好使A、B发
4、生相对滑动的F值。当A、B间的静摩擦力达到5N时,既可以认为它们仍然保持相对静止,有共同的加速度,又可以认为它们间已经发生了相对滑动,A在滑动摩擦力作用下加速运动。这时以A为对象得到a =f/mA =5m/s2,再以A、B系统为对象得到 F =(mA+mB)a =15N当F=10N15N时,A、B间一定发生了相对滑动,用质点组牛顿第二定律列方程:,而a A=f/mA =5m/s2,于是可以得到a B =7.5m/s2例2如图所示,m =4kg的小球挂在小车后壁上,细线与竖直方向成37角。当:小车以a=g向右加速;小车以a=g向右减速时,分别求细线对小球的拉力F1和后壁对小球的压力F2各多大?F
5、2F1GavF1Gva解:向右加速时小球对后壁必然有压力,球在三个共点力作用下向右加速。合外力向右,F2向右,因此G和F1的合力一定水平向左,所以 F1的大小可以用平行四边形定则求出:F1=50N,可见向右加速时F1的大小与a无关;F2可在水平方向上用牛顿第二定律列方程:F2-0.75G =ma计算得F2=70N。可以看出F2将随a的增大而增大。(这种情况下用平行四边形定则比用正交分解法简单。) 必须注意到:向右减速时,F2有可能减为零,这时小球将离开后壁而“飞”起来。这时细线跟竖直方向的夹角会改变,因此F1的方向会改变。所以必须先求出这个临界值。当时G和F1的合力刚好等于ma,所以a的临界值
6、为。当a=g时小球必将离开后壁。不难看出,这时F1=mg=56N, F2=0例3如图所示,在箱内的固定光滑斜面(倾角为)上用平行于斜面的细线固定一木块,木块质量为m。当箱以加速度a匀加速上升时,箱以加速度a匀加速向左时,分别求线对木块的拉力F1和斜面对箱的压力F2解:a向上时,由于箱受的合外力竖直向上,重力FF2F1a vGvaaxayF2F1GGxGyxy竖直向下,所以F1、F2的合力F必然竖直向上。可先求F,再由F1=Fsin和F2=Fcos求解,得到:F1=m(g+a)sin,F2=m(g+a)cos 显然这种方法比正交分解法简单。a向左时,箱受的三个力都不和加速度在一条直线上,必须用正
7、交分解法。可选择沿斜面方向和垂直于斜面方向进行正交分解,(同时也正交分解a),然后分别沿x、y轴列方程求出F1、F2:F1=m(gsin-acos),F2=m(gcos+asin) 经比较可知,这样正交分解比按照水平、竖直方向正交分解列方程和解方程都简单。 还应该注意到F1的表达式F1=m(gsin-acos)显示其有可能得负值,这意味这绳对木块的力是推力,这是不可能的。可见这里又有一个临界值的问题:当向左的加速度agtan时F1=m(gsin-acos)沿绳向斜上方;当agtan时木块和斜面不再保持相对静止,而是相对于斜面向上滑动,绳子松弛,拉力为零。例4如图所示,质量为m=4kg的物体与地
8、面间的动摩擦因数为=0.5,在与水平成=37角的恒力F作用下,从静止起向右前进t1=2s后撤去F,又经过t2=4s物体刚好停下。求:F的大小、最大速度vm、总位移sF解:由运动学知识可知:前后两段匀变速直线运动的加速度a与时间t成反比,而第二段中mg=ma2,加速度a2=g=5m/s2,所以第一段中的加速度一定是a1=10m/s2。再由方程可求得:F=54.5N 第一段的末速度和第二段的初速度相等都是最大速度,可以按第二段求得:vm=a2t2=20m/s 又由于两段的平均速度和全过程的平均速度相等,所以有m 需要引起注意的是:在撤去拉力F前后,物体受的摩擦力发生了改变。四、连接体(质点组) 在
9、应用牛顿第二定律解题时,有时为了方便,可以取一组物体(一组质点)为研究对象。这一组物体可以有相同的速度和加速度,也可以有不同的速度和加速度。以质点组为研究对象的好处是可以不考虑组内各物体间的相互作用,这往往给解题带来很大方便。使解题过程简单明了。vFaA B例5如图A、B两木块的质量分别为mA、mB,在水平推力F作用下沿光滑水平面匀加速向右运动,求A、B间的弹力FN。解:这里有a、FN两个未知数,需要建立两个方程,要取两次研究对象。比较后可知分别以B、(A+B)为对象较为简单(它们在水平方向上都只受到一个力作用)。可得这个结论还可以推广到水平面粗糙时(A、B与水平面间相同);也可以推广到沿斜面
10、方向推A、B向上加速的问题,有趣的是,答案是完全一样的。例6如图,倾角为的斜面与水平面间、斜面与质量为m的木块间的动摩擦因数均为,木块由静止开始沿斜面加速下滑时斜面仍保持静止。求水平面给斜面的摩擦力大小和方向。解:以斜面和木块整体为研究对象,水平方向仅受静摩擦力作用,而整体中只有木块的加速度有水平方向的分量。可以先求出木块的加速度,再在水平方向对质点组用牛顿第二定律,很容易得到: 如果给出斜面的质量M,本题还可以求出这时水平面对斜面的支持力大小为:FN=Mg+mg(cos+sin)sin,这个值小于静止时系统对水平面的压力。O12例7 长L的轻杆两端分别固定有质量为m的小铁球,杆的三等分点O处
11、有光滑的水平转动轴。用手将该装置固定在杆恰好水平的位置,然后由静止释放,当杆到达竖直位置时,求轴对杆的作用力F的大小和方向。解:根据系统机械能守恒可求出小球1在最高点的速度v:0=mg1/3L-mg2/3L+1/2mv2+1/2m(2v)2, 在竖直位置对系统用牛顿第二定律,以向下为正方向,设轴对系统的作用力F向上,得到F=2.4mg 五、向心力和向心加速度(牛顿第二定律在圆周运动中的应用)1.做匀速圆周运动物体所受的合力为向心力 “向心力”是一种效果力。任何一个力,或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做匀速圆周运动的,都可以作为向心力。2.一般地说,做圆周运动物体沿半
12、径方向的合力为向心力。当作圆周运动物体所受的合力不指向圆心时,可以将它沿半径方向和切线方向正交分解,其沿半径方向的分力为向心力,只改变速度的方向,不改变速度的大小;其沿切线方向的分力为切向力,只改变速度的大小,不改变速度的方向。分别与它们相应的向心加速度描述速度方向变化的快慢,切向加速度描述速度大小变化的快慢。3.圆锥摆NGF 圆锥摆是典型的运动轨迹在水平面内的匀速圆周运动。其特点是由物体的重力与弹力的合力充当向心力,向心力的方向水平。也可以说是其中弹力的水平分力提供向心力(弹力的竖直分力和重力互为平衡力)。例8小球在半径为R的光滑半球内做水平面内的匀速圆周运动,试分析图中的(小球与半球球心连
13、线跟竖直方向的夹角)与线速度v、周期T的关系。(小球的半径远小于R。)解:小球做匀速圆周运动的圆心在和小球等高的水平面上(不在半球的球心),向心力F是重力G和支持力N的合力,所以重力和支持力的合力方向必然水平。如图所示有: ,由此可得:,(式中h为小球轨道平面到球心的高度)。可见,越大(即轨迹所在平面越高),v越大,T越小。 本题的分析方法和结论同样适用于圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。共同点是由重力和弹力的合力提供向心力,向心力方向水平。4.竖直面内圆周运动最高点处的受力特点及结论 这类题的特点是:物体做圆周运动的速率是时刻在改变的,由于机械能
14、守恒,物体在最高点处的速率最小,在最底点处的速率最大。物体在最低点处向心力向上,而重力向下,所以弹力必然向上且大于重力;而在最高点处,向心力向下,重力也向下,所以弹力的方向就不能确定了,要分三种情况进行讨论。绳FGGF弹力只可能向下,如绳拉球。这种情况下有即,否则不能通过最高点。弹力只可能向上,如车过桥。在这种情况下有,否则将离开桥面,做平抛运动。弹力既可能向上又可能向下,如管内转(或杆连球)。这种情况下,速度大小v可以取任意值。可以进一步讨论:当时弹力必然是向下的;当时弹力必然是向上的;当时弹力恰好为零。当弹力大小Fmg时,向心力只有一解:F +mg;当弹力F=mg时,向心力等于零。例9杆长
15、为L,球的质量为m,杆连球在竖直平面内绕轴O自由转动,已知在最高点处,杆对球的弹力大小为F=1/2mg,求这时小球的即时速度大小。解:小球所需向心力向下,本题中F=1/2mgmg,所以弹力的方向可能向上也可能向下。若F向上,则 若F向下,则本题是杆连球绕轴自由转动,根据机械能守恒,还能求出小球在最低点的即时速度。 特别需要注意的是:若题目中说明小球在杆的带动下在竖直面内做匀速圆周运动,则运动过程中小球的机械能不再守恒,这两类题务必分清。六、万有引力 人造卫星1.用万有引力定律求中心星球的质量和密度 当一个星球绕另一个星球做匀速圆周运动时,设中心星球质量为M,半径为R,环绕星球质量为m,线速度为
16、v,公转周期为T,两星球相距r,由万有引力定律有:,可得出,由r、v或r、T就可以求出中心星球的质量;如果环绕星球离中心星球表面很近,即满足rR,那么由可以求出中心星球的平均密度。m1m2r1r2O2.双星 宇宙中往往会有相距较近,质量可以相比的两颗星球,它们离其它星球都较远,因此其它星球对它们的万有引力可以忽略不计。在这种情况下,它们将围绕它们连线上的某一固定点做同周期的匀速圆周运动。这种结构叫做双星。由于双星和该固定点总保持三点共线,所以在相同时间内转过的角度必相等,即双星做匀速圆周运动的角速度必相等,因此周期也必然相同。由于每颗星的向心力都是由双星间相互作用的万有引力提供的,因此大小必然
17、相等,由F=mr2可得,于是有列式时须注意:万有引力定律表达式中的r表示双星间的距离,按题意应该是L,而向心力表达式中的r表示它们各自做圆周运动的半径,在本题中为r1、r2,千万不可混淆。3.人造卫星(只讨论绕地球做匀速圆周运动的人造卫星)人造卫星的线速度和周期。人造卫星的向心力是由地球对它的万有引力提供的,因此有:,由此可得到两个重要的结论:和。可以看出,人造卫星的轨道半径r、线速度大小v和周期T是一一对应的,其中一个量确定后,另外两个量也就唯一确定了。离地面越高的人造卫星,线速度越小而周期越大。近地卫星。近地卫星的轨道半径r可以近似地认为等于地球半径R,又因为地面附近,所以有。它们分别是绕
18、地球做匀速圆周运动的人造卫星的最大线速度和最小周期。同步卫星。“同步”的含义就是和地球保持相对静止(又叫静止轨道卫星),所以其周期等于地球自转周期,既T=24h,根据可知其轨道半径是唯一确定的,经过计算可得求得同步卫星离地面的高度为h=3.6107m5.6R地,而且该轨道必须在地球赤道的正上方,卫星的运转方向必须是由西向东。例10.“神舟三号”顺利发射升空后,在离地面340km的圆轨道上运行了108圈。运行中需要多次进行 “轨道维持”。所谓“轨道维持”就是通过控制飞船上发动机的点火时间和推力的大小方向,使飞船能保持在预定轨道上稳定运行。如果不进行轨道维持,由于飞船受轨道上稀薄空气的摩擦阻力,轨
19、道高度会逐渐降低,在这种情况下飞船的动能、重力势能和机械能变化情况将会是 A.动能、重力势能和机械能都逐渐减小B.重力势能逐渐减小,动能逐渐增大,机械能不变C.重力势能逐渐增大,动能逐渐减小,机械能不变D.重力势能逐渐减小,动能逐渐增大,机械能逐渐减小解:由于阻力很小,轨道高度的变化很慢,卫星运行的每一圈仍可认为是匀速圆周运动。由于摩擦阻力做负功,根据机械能定理,卫星的机械能减小;由于重力做正功,根据势能定理,卫星的重力势能减小;由可知,卫星动能将增大。这也说明该过程中重力做的功大于克服阻力做的功,外力做的总功为正。答案选DQv2v3Pv4v1例11 如图所示,某次发射同步卫星时,先进入一个近
20、地的圆轨道,然后在P点点火加速,进入椭圆形转移轨道(该椭圆轨道的近地点为近地圆轨道上的P,远地点为同步轨道上的Q),到达远地点时再次自动点火加速,进入同步轨道。设卫星在近地圆轨道上运行的速率为v1,在P点短时间加速后的速率为v2,沿转移轨道刚到达远地点Q时的速率为v3,在Q点短时间加速后进入同步轨道后的速率为v4。试比较v1、v2、v3、v4的大小,并用小于号将它们排列起来_。解:根据题意在P、Q两点点火加速过程中,卫星速度将增大,所以有v2v1、v4v3,而v1、v4是绕地球做匀速圆周运动的人造卫星的线速度,由于它们对应的轨道半径r1v4。把以上不等式连接起来,可得到结论:v2v1v4v3。
21、(卫星沿椭圆轨道由PQ运行时,由于只有重力做负功,卫星机械能守恒,其重力势能逐渐增大,动能逐渐减小,因此有v2v3。) 例12 欧洲航天局用阿里亚娜火箭发射地球同步卫星。该卫星发射前在赤道附近(北纬5左右)南美洲的法属圭亚那的库卢基地某个发射场上等待发射时为1状态,发射到近地轨道上做匀速圆周运动时为2状态,最后通过转移、调试,定点在地球同步轨道上时为3状态。将下列物理量按从小到大的顺序用不等号排列:这三个状态下卫星的线速度大小_;向心加速度大小_;周期大小_。解:比较2、3状态,都是绕地球做匀速圆周运动,因为r2r3,所以v3v2;比较1、3状态,周期相同,即角速度相同,而r1r3由v= r,
22、显然有v1v3;因此v1v3v2。比较2、3状态,都是绕地球做匀速圆周运动,因为r2r3,而向心加速度就是卫星所在位置处的重力加速度g=GM/r21/r2,所以a3a2;比较1、3状态,角速度相同,而r1r3,由a=r2r,有a1a3;所以a1a3a2。比较1、2状态,可以认为它们轨道的周长相同,而v1 v2,所以T2T1;又由于3状态卫星在同步轨道,周期也是24h,所以T3=T1,因此有T2T1=T3。专题之二 动量和能量概述:处理力学问题、常用的三种方法一是牛顿定律;二是动量关系;三是能量关系。若考查的物理量是瞬时对应关系,常用牛顿运动定律;若研究对象为一个系统,首先考虑的是两个守恒定律;
23、若研究对象为一个物体,可优先考虑两个定理。特别涉及时间问题时,优先考虑的是动量定理、而涉及位移及功的问题时,优先考虑的是动能定理。两个定律和两个定理,只考查一个物理过程的始末两个状态,对中间过程不予以细究,这正是它们的方便之处,特别是变力问题,就显示出其优越性。动量与能量的综合问题,是高中力学最重要的综合问题,也是难度较大的问题。分析这类问题时,应首先建立清晰的物理图景、抽象出物理模型、选择物理规律、建立方程进行求解。例题分析:FAB例1. 如图所示,质量分别为m和2m的A、B两个木块间用轻弹簧相连,放在光滑水平面上,A靠紧竖直墙。用水平力F将B向左压,使弹簧被压缩一定长度,静止后弹簧储存的弹
24、性势能为E。这时突然撤去F,关于A、B和弹簧组成的系统,下列说法中正确的是 (BD) A.撤去F后,系统动量守恒,机械能守恒 B.撤去F后,A离开竖直墙前,系统动量不守恒,机械能守恒 C.撤去F后,A离开竖直墙后,弹簧的弹性势能最大值为E D.撤去F后,A离开竖直墙后,弹簧的弹性势能最大值为E/3A离开墙前墙对A有弹力,这个弹力虽然不做功,但对A有冲量,因此系统机械能守恒而动量不守恒;A离开墙后则系统动量守恒、机械能守恒。A刚离开墙时刻,B的动能为E,动量为p=向右;以后动量守恒,因此系统动能不可能为零,当A、B速度相等时,系统总动能最小,这时的弹性势能为E/3。 指出:应用守恒定律要注意条件
25、。 对整个宇宙而言,能量守恒和动量守恒是无条件的。但对于我们选定的研究对象所组成的系统,守恒定律就有一定的条件了。如系统机械能守恒的条件就是“只有重力做功”;而系统动量守恒的条件就是“合外力为零”。LddB例2. 长为L宽为d质量为m总电阻为R的矩形导线框上下两边保持水平,在竖直平面内自由落下而穿越一个磁感应强度为B宽度也是d的匀强磁场区。已知线框下边刚进入磁场就恰好开始做匀速运动。则整个线框穿越该磁场的全过程中线框中产生的电热是_。若直接从电功率计算,就需要根据求匀速运动的速度v、再求电动势E、电功率P、时间t,最后才能得到电热Q。如果从能量守恒考虑,该过程的能量转化途径是重力势能EP电能E
26、电热Q,因此直接得出Q=2mgd 指出:深刻理解守恒的本质,灵活选用守恒定律的各种表示形式 例如机械能守恒定律就有多种表达形式:EK+EP=EK/ +EP,EK+EP=0。它们的实质是一样的,但在运用时有繁简之分。因为重力势能的计算要选定参考平面,而重力势能变化的计算跟参考平面的选取无关,所以用后者往往更方便一些。在运用更广义的能量守恒定律解题时,可以这样分析:先确定在某一过程中有哪些能量参与了转化;哪些能量增加了,哪些能量减少了;然后根据能量守恒的思想,所有增加了的能量之和一定等于所有减少了的能量之和,即E增=E减。例3如图所示,质量为1.0kg的物体m1,以5m/s的速度在水平桌面上AB部
27、分的左侧向右运动,桌面AB部分与m1间的动摩擦因数=0.2,AB间的距离s=2.25m,桌面其他部分光滑。m1滑到桌边处与质量为2.5kg的静止物体m2发生正碰,碰撞后m2在坚直方向上落下0.6m时速度大小为4m/s,若g取10m/s2,问m1碰撞后静止在什么位置?解析:m1向右运动经过AB段作匀减速运动,由动能定律可以求出离开B点继续向右运动的速度为4米/秒;和m2发生碰撞后,m2作平抛运动,由平抛运动知识可以求出m2做平抛运动的初速度(碰撞之后)为2米/秒。利用动量守恒定律可以求出碰撞之后瞬间m1的速度为1米/秒。由动能定律可以求出返回经过AB段,离B点0.25米处停止。例4翰林汇翰林汇2
28、22例子例如图所示,球A无初速地沿光滑圆弧滑下至最低点C后,又沿水平轨道前进至D与质量、大小完全相同的球B发生动能没有损失的碰撞。B球用长L的细线悬于O点,恰与水平地面切于D点。A球与水平地面间摩擦系数m=0.1,已知球A初始高度h=2米,CD=1米。问: (1)若悬线L=2米,A与B能碰几次?最后A球停在何处? (2)若球B能绕悬点O在竖直平面内旋转,L满足什么条件时,A、B将只能碰两次?A球最终停于何处?(1)20次 A球停在C处(2)L0.76米,A球停于离D9.5米处例5如图所示,小木块的质量m0.4kg,以速度20m/s,水平地滑上一个静止的平板小车,小车的质量M1.6kg,小木块与
29、小车间的动摩擦因数0.2.(不计车与路面的摩擦)求:(1)小车的加速度;(2)小车上的木块相对于小车静止时,小车的速度;(3)这个过程所经历的时间. (1)0.5m/s2;(2)4m/s;(3)8s第二问:对m、M系统研究,利用动量守恒定律很快求出木块相对小车静止时,小车的速度。也可以利用动能定理分别研究m和M,但相对而言要麻烦得多。表明合理选择物理规律求解,可以提高解题速度和准确程度例6 如图所示,在光滑水平地面上有一辆质量为M的小车,车上装有一个半径为R的光滑圆环.一个质量为m的小滑块从跟车面等高的平台上以速度V0滑入圆环.试问:小滑块的初速度V0满足什么条件才能使它运动到环顶时恰好对环顶
30、无压力? 解析:滑块至圆环的最高点且恰好对环顶无压力,应有式中V是滑块相对圆心O的线速度,方向向左。设小车此时速度u,并以该速度方向为正方向,则滑块的对地速度为对滑块和小车组成的系统,由于水平方向所受合外力为零,由动量守恒有由滑块和小车系统的机械能守恒有三式联立求解得:指出:公式是相对圆心的线速度,而本题中的圆心是以u向右移动的,所以滑快对地速度为Vu。而动量守恒定律、机械能守恒定律表达式中的速度均应为对地的。X例7翰林汇例例翰林汇13、如图所示, 一质量为M、长为的长方形木板B放在光滑的水平地面上, 在其右端放一质量为m的小木块A, mM. 现以地面为参照系, 给A和B以大小相等、方向相反的
31、初速度, 使A开始向左运动、B开始向右运动, 但最后A, 刚好没有滑离B 板(以地面为参照系)(1)若已知A和B的初速度大小均为V0, 求它们最后的速度的大小和方向.(2) 若初速度大小未知, 求小木块A向左运动到达的最远处(从地面上看)离出发点的距离.解析: A和B相对静止时,A相对B向左滑动了L如图(3)设此时速度为V。由动量守恒定律: 小木块A向左运动到达最远处x时(如图(2)对地速度为零,对小木块A由动能定理: 对AB全程由能量转化和守恒定律:由以上三式可解得x。求解本题要充分利用草图弄清物理过程。例8、 如图所示,小车A质量为置于光滑水平面上。初速度为,带电量q=0.2C的可视为质点
32、的物体B,质量为,轻放在小车的右端,它们的周转围存在匀强磁场,方向垂直纸面向里,磁场强度为B=0.5T,物体B与小车之间有摩擦力,小车足够长.求(1)物体B的最大速度.(2)小车A的最小速度.(3)在此过程中转变成多少内能VA B 解析:小车受到摩擦力作减速运动,物体B受到摩擦力作用而加速运动,其受到的磁场力方向向上,把A和B作为一个系统,在竖直方向上合外力为零,水平方向不受外力作用,系统总动量守恒.当物体B受到的磁场力和所受重力平衡时,其速度最大,此时小车A的速度最小,在这个过程中系统损失的动能转变成内能.(1) (2)根据动量守恒定律有:(3)例9静止在太空中的飞行器上有一种装置,它利用电
33、场加速带电粒子,形成向外发射的粒子流,从而对飞行器产生反冲力,使其获得加速度.已知飞行器的质量为M,发射的2价氧离子,发射功率为P,加速电压为U,每个氧离子的质量为m,单位电荷的电量为e,不计发射离子后飞行器质量的变化,求:(1)射出的氧离子速度;(2)每秒钟射出的氧离子数;(3)射出离子后飞行器开始运动的加速度。解析:(1)以氧离子为研究对象,根据动能定理,有:所以氧离子速度为 (2)设每秒钟射出的氧离子数为N,则发射功率可表示为:所以氧离子数为N=P/2eU (3)以氧离子和飞行器为系统,设飞行器的反冲速度为V,根据动量守恒定律 所以,飞行器的加速度为例10、质量为0.01kg的子弹以30
34、0m/s的水平速度射中一静止在光滑水平面上的木块,子弹进入木块6cm而相对于木块静止下来。在这过程中,木块往前移动了0.2cm。求:(1)木块的末速度;(2)木块的质量解析:以子弹和木块为系统,相对静止时共同速度为V 由动量守恒 子弹与木块相对静止时,木块滑动的位移为L,子弹相对地面发生的位移为L+d,对子弹和木块分别利用动能定理: 由以上三式可解得V=10m/S M=0.29Kg例11、如图,物块A以初速度V0滑上放在光滑水平面上的长木板B。若B固定,则A恰好滑到B的右端时停下;若B不固定,则A在B上滑行的长度为板长的4/5,求A、B的质量比。解析:B固定时:对A由动量定理 B不固定时: A
35、相对B滑动距离4L/5 时,AB相对静止,此时共同速度为V,由动量守恒定律 又由能的转化和守恒定律由以上三式可得M=4m。ABCv2v例12、 质量为m的长木板A静止在光滑水平面上,另两个质量也是m的铁块B、C同时从A的左右两端滑上A的上表面,初速度大小分别为v和2v,B、C与A间的动摩擦因数均为。试分析B、C滑上长木板A后,A的运动状态如何变化?为使B、C不相撞,A木板至少多长?解:B、C都相对于A滑动时,A所受合力为零,保持静止。这段时间为。B刚好相对于A 静止时,C的速度为v,A开向左做匀加速运动,由动量守恒可求出A、B、C最终的共同速度,这段加速经历的时间为,最终A将以做匀速运动。 全
36、过程系统动能的损失都将转化为系统的内能,而摩擦生热,由能量守恒定律列式:。这就是A木板应该具有的最小长度。AB例13、 质量为M的小车A左端固定一根轻弹簧,车静止在光滑水平面上,一质量为m的小物块B从右端以速度v0冲上小车并压缩弹簧,然后又被弹回,回到车右端时刚好与车保持相对静止。求这过程弹簧的最大弹性势能EP和全过程系统摩擦生热Q各多少?简述B相对于车向右返回过程中小车的速度变化情况。ABF f解:全过程系统动量守恒,小物块在车左端和回到车右端两个时刻,系统的速度是相同的,都满足:mv0=(m+M)v;第二阶段初、末系统动能相同,说明小物块从车左端返回车右端过程中弹性势能的减小恰好等于系统内
37、能的增加,即弹簧的最大弹性势能EP恰好等于返回过程的摩擦生热,而往、返两个过程中摩擦生热是相同的,所以EP是全过程摩擦生热Q的一半。又因为全过程系统的动能损失应该等于系统因摩擦而增加的内能,所以EK=Q=2EP 而, 至于B相对于车向右返回过程中小车的速度变化,则应该用牛顿运动定律来分析:刚开始向右返回时刻,弹簧对B的弹力一定大于滑动摩擦力,根据牛顿第三定律,小车受的弹力F也一定大于摩擦力f,小车向左加速运动;弹力逐渐减小而摩擦力大小不变,所以到某一时刻弹力和摩擦力大小相等,这时小车速度最大;以后弹力将小于摩擦力,小车受的合外力向右,开始做减速运动;B脱离弹簧后,小车在水平方向只受摩擦力,继续
38、减速,直到和B具有向左的共同速度,并保持匀速运动。例14、如图所示,在水平固定的杆上,套有一个质量为2m的环,一根长为L的轻质绳(质量不计),一端拴在环上,另一端系住一质量为m的球,先将球拉至绳沿水平的位置,然后按住环且将球由静止释放,当球下摆至绳与水平方向成300的位置时,再将环释放,若不计一切摩擦阻力,求球在以后的运动中可摆到离杆的最小距离。例15、 质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。当他向左走到船的左端时,船左端离岸多远?l2 l1解:本类型题不宜用牛顿运动定律求解先画出示意图。人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等。从图中可以
39、看出,人、船的位移大小之和等于L。设人、船位移大小分别为l1、l2,则:mv1=Mv2,两边同乘时间t,ml1=Ml2,而l1+l2=L, 应该注意到:此结论与人在船上行走的速度大小无关。不论是匀速行走还是变速行走,甚至往返行走,只要人最终到达船的左端,那么结论都是相同的。做这类题目,首先要画好示意图,要特别注意两个物体相对于地面的移动方向和两个物体位移大小之间的关系。 以上所列举的人、船模型的前提是系统初动量为零。如果发生相互作用前系统就具有一定的速度,那就不能再用m1v1=m2v2这种形式列方程,而要利用(m1+m2)v0= m1v1+ m2v2列式。专题之三 带电粒子在复合场中的运动1.
40、带电粒子在匀强电场、匀强磁场中运动的比较在场强为E的匀强电场中在磁感应强度为B的匀强磁场中初速度为零做初速度为零的匀加速直线运动保持静止初速度场线做匀变速直线运动做匀速直线运动初速度场线做匀变速曲线运动(类平抛运动)做匀速圆周运动共同规律受恒力作用,做匀变速运动洛伦兹力不做功,动能不变 2.带电粒子以垂直(或平行)于场线的初速度进入匀强电(磁)场 解决这类问题时一定要重视画示意图的重要作用。 带电粒子在匀强电场中做类平抛运动。这类题的解题关键是画出示意图,要点是末速度的反向延长线跟初速度延长线的交点在水平位移的中点。 带电粒子在匀强磁场中做匀速圆周运动。这类题的解题关键是画好示意图,画示意图的
41、要点是找圆心、找半径和用对称。 yl/2LhO例1 右图是示波管内部构造示意图。竖直偏转电极的板长为l=4cm,板间距离为d=1cm,板右端到荧光屏L=18cm,(本题不研究水平偏转)。电子沿中心轴线进入偏转电极时的速度为v0=1.6107m/s,电子电荷e=1.610-19C,质量为0.9110-30kg。为了使电子束不会打在偏转电极的极板上,加在偏转电极上的电压不能超过多少?电子打在荧光屏上的点偏离中心点O的最大距离是多少?解:设电子刚好打在偏转极板右端时对应的电压为U,根据侧移公式不难求出U(当时对应的侧移恰好为d/2):,得U=91V;然后由图中相似形对应边成比例可以求得最大偏离量h=
42、5cm。例2 如图甲所示,在真空中,足够大的平行金属板M、N相距为d,水平放置。它们的中心有小孔A、B,A、B及O在同一条竖直线上,两板的左端连有如图所示的电路,交流电源的内阻忽略不计,电动势为U,U的方向如图甲所示,U随时间变化如图乙所示,它的峰值为。今将S接b一段足够长时间后又断开,并在A孔正上方距A为h(已知)的O点释放一个带电微粒P,P在AB之间刚好做匀速运动,再将S接到a后让P从O点自由下落,在t=0时刻刚好进入A孔,为了使P一直向下运动,求h与T的关系式?解析:当S接b一段足够长的时间后又断开,而带电微粒进入A孔后刚好做匀速运动,说明它受到的重力与电场力相等,有 若将S接a后,刚从
43、t=0开始,M、N两板间的电压为,2,故带电粒子进入电场后,所受到的电场力为,也就是以大小为g、方向向上的加速度作减速运动。当t=T/2后,M、N两板间的电压为零,微粒在重力的作用下运动。若要使带电微粒一直向下运动,则带电粒子在t=T/2时的速度V0。由带电粒了在电场外和电场内加速、减速运动的对称性,要使V0,则可知 M NO例3 如图直线MN上方有磁感应强度为B的匀强磁场。正、负电子同时从同一点O以与MN成30角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解:由带电粒子在匀强磁场中做匀速圆周运动的半径公式和周期公式知,正、负电子的半径和周期
44、是相同的,只是偏转方向相反。由于向心力方向跟速度方向垂直,所以圆心一定在过O点垂直于速度的直线上,因此可确定圆心和半径;由对称性知,射入、射出点处速度和MN所成的角必然相等。因此射入点、射出点和圆心恰好是正三角形的三个顶点。两个射出点相距2r。由图看出,正负电子在磁场中的轨迹圆弧所含的度数分别是60和300,经历的时间分别为T/6和5T/6,相差2T/3。故答案为射出点相距,时间差为。 3.电场力和洛仑兹力的综合应用: 当EB时,正交的匀强磁场和匀强电场组成速度选择器。带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速通过速度选择器。否则将发生偏转。这个速度的大小可以由洛伦兹力和电场力的平
45、衡得出:qvB=Eq ,v=E/B。在本图中,速度方向必须向右。这个结论与离子带何种电荷、电荷多少都无关。若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。OEBO/a bd cOEBO/a bd cLr例5正方形abcd内有方向如图的场强为E的匀强电场和磁感应强度为B的匀强磁场。质子流从ad边的中点O以初速度v0,沿着与ab平行的方向射入正方形区域。若撤去匀强磁场,质子将达到b点;若撤去匀强电场,质子将打到c点。求:EB 当匀强电场和匀强磁场同时存在时,为使质子沿原方向射入后能做直线运动而打到bc边的中点O/,其初速度应调整为v0的多少倍?解:只有匀强电场时,由图知质子打到b点时速度的偏转角为=45,可得:;只有匀强磁场时,由图可求得质子做圆周运动的半径r=5L/4,可得:;由以上两式可得EB=5v04 为了使质子做直线运动,必须满足Eq=Bqv,所以1.25v0 例6、(1991年上海高考题)如图所示质量为m、带电量为+q的粒子,从两平行电极板正中央垂直电场线和磁感