1、目 录第一部分 设计任务与调研3第二部分 设计说明6第三部分 设计成果17第四部分 结束语24第五部分 致谢25第一部分 设计任务与调研 水是生产生活中不可缺少的重要组成部分, 在节水节能已成为时代特征的现实条件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度低。主要表现在用手高峰期,水的供给量常常低于需求量,出现水压降低供不应求的现象,而在用水低峰期,水的供给量常常高于需求量,出现水压升高供过于求的情况,此时将会造成能量的浪费,同时有可能导致水管爆破和用水设备的损坏。因此开发基于的变频恒压供水系统具有重要的现实意义1.1
2、引言 水是生命之源,人类生存和发展都离不开水。在通常的城市及乡镇供水中,基本上都是靠供水站的电动机带动离心水泵,产生压力使管网中的自来水流动,把供水管网中的自来水送给用户。但供水机泵供水的同时,也消耗大量的能量,如果能在提高供水机泵的效率、确保供水机泵的可靠稳定运行的同时,降低能耗,将具有重要经济意义。 随着变频调速技术的发展和人们对生活饮用水品质要求的不断提高,变频恒压供水系统已逐渐取代原有的水塔供水系统,广泛应用于多层住宅小区生活供水系统。然而,由于新系统多会继续使用原有系统的部分旧设备(如水泵),在对原有供水系统进行变频改造的实践中,往往会出现一些在理论上意想不到的问题。本文介绍的变频控
3、制恒压供水系统,是在对一个典型的水塔供水系统的技术改造实践中,根据尽量保留原有设备的原则设计的,该系统很好的解决了旧设备需要频繁检修的问题,既体现了变频控制恒压供水的技术优势,同时有效的节省了资金。1.2 变频恒压供水产生的背景和意义 泵站担负着工农业和生活用水的重要任务,运行中需大量消耗能量,提高泵站效率:降低能耗,对国民经济有重大意义。我国泵站的特点是数量大、范围广、类型多、发展速度快,在工程规模上也有一定水平,但由于设计中忽视动能经济观点以及机电产品类型和质量上存在的一些问题等等原因,致使在技术水平、工程标准以及经济效益指标等方面与国外先进水平相比,还有一定的差距。目前,大量的电能消耗在
4、水泵、风机负载上,城乡居民用水设备所消耗的电量在这类负载中占了相当的比例。这一方面是由于我国居民多,用水量大,造成用电量大:另一方面是因为我国供水设备工作效率低,控制方式不够科学合理。造成不必要的能量浪费。因此,研究提水系统的能量模型,找出能够节能的控制策略方法,这里大有潜力可挖,是减少能耗,保障供水的一个很有意义的工作。以变频器为核心结合PLC组成的控制系统具有高可靠性、强抗干扰能力、组合灵活、编程简单、维修方便和低成本等诸多特点,变频恒压供水系统集变频技术、电气技术、防雷避雷技术、现代控制、远程监控技术于一体。采用该系统进行供水可以提高供水系统的稳定性和可靠性,方便地实现供水系统的集中管理
5、与监控;同时系统具有良好节能性,这在能量日益紧缺的今天尤为重要,所以研究设计该系统,对于提高企业效率以及人民的生活水平、降低能耗等方面具有重要的现实意义。1.3 变频恒压供水系统的国内外的发展状况 变频恒压供水是在变频调速技术发展之后逐渐发展起来的,在早期,由于国外生产的变频器的功能主要限定在频率控制、 升降速控制、正反转控制、起制动控制、变压变频比控制及各种保护功能。应用在变频恒压供水系统中,变频器仅作为执行机构,为了满足供水量大小需求的不同时,保证管网压力恒定,需在变频器外部压力控制器和压力传感器,对压力进行闭环控制。从查阅的资料的情况来看,国外的恒压供水工程在设计时都采用一台变频器只带一
6、台水泵机组的方式,几乎没有用一台变频器拖动多台水泵机组运行的情况,因而投资成本高。即1968年,丹麦的丹弗斯公司发明并首家生产变频器后,随着变频器技术的发展和变频恒压系统的稳定性、可靠性以及自动化程度高等方面的优先以及显著地节能效果被大家发现认可后,国外许多生产变频器的厂家开始重视并推出具有恒压供水功能的变频器,像瑞士的ABB集团推出了HVAC变频技术,法国的施耐德公司推出了恒压供水基板,备有PID调节器和PLC可编程控制器等硬件继承在变频器控制基板上,通过设置指令代码实现PLC和PID等电控系统的功能,只要搭载配套的恒压供水单元,便可直接控制多个内置的电磁接触器工作,可构成最多七台电机的供水
7、系统。但是也有其缺点,就是输出接口的扩展功能缺乏灵活性,系统的动态性能和稳定性不高,与别的监控系统和组态软件难以实现数据的通信,并且限制了带负载的容量,因此适用范围受到限制。 目前国内有不少公司都在做变频恒压供水的工程,大多采用国外的变频器控制水泵的转速,水管的管网压力的闭环调节及多台水泵的循环控制,有的采用单片机及相应的软件予以实现;有的采用PLC及相应软件予以实现。但在系统的动态性能、稳定性能、抗干扰性能以及开放性等多方面的综合技术指标来说,还远远没能达到所有用户的要求。原深圳华为电气公司(现已改名艾默生)和成都希望集团(森兰牌变频器)也推出了恒压供水专用变频器(5.5Kw-22kW),无
8、需外接PLC盒PID调节器,坑完成最多四台水泵的循环切换、定时起动、停止和定时循环(丹麦丹弗斯公司的VLT系列变频器可实现七台水泵机组的切换)。该变频器将压力闭环调节与循环逻辑控制功能集成在变频器内部实现,但其输出接口限制了带负载容量,同时操作不方便且不具有数据通信功能,因此只适用于小容量,控制要求不高的供水场所。 可以看出,目前在国内外变频调速恒压供水系统的研究设计中,对于能适应不同的用水场合,结合现代控制技术、网络和通讯技术同时兼顾系统的电磁兼容性的变频恒压供水系统的水压闭环控制的研究还是不够的,因此,有待于进一步淡淡的研究改善,使其能更好的应用于生活、生产实践中。1.4 设计任务及要求
9、本系统以一个供水系统作为被控对象,采用PLC和变频技术相结合技术,并引用计算机对供水系统进行远程监控和管理,保证供水系统安全可靠的运行。PLC控制变频恒压供水系统主要有变频器、可编程控制器、压力变送器、和水泵机组一起组成一个完整的闭环调节系统,了解供水系统的运行工艺情况,设计恒压供水控制系统的硬件电路;研究恒压变频供水的控制方法,实现对系统的高性能控制。第二部分 设计说明2.1 变频恒压供水系统的理论分析2.1.1 电动机的调速原理水泵电机多采用三相异步电动机,而其转速公式为: (2-1) 式中:f表示电源频率,p表示电动机极对数,s表示转差率。从上式可知,三相异步电动机的调速方法有:(1)
10、改变电源频率(2) 改变电机极对数(3) 改变转差率 改变电机极对数调速的调控方式控制简单,投资省,节能效果显著,效率高,但需要专门的变极电机,是有级调速,而且级差比较大,即变速时转速变化较大,转矩也变化大,因此只适用于特定转速的生产机器。改变转差率调速为了保证其较大的调速范围一般采用串级调速的方式,其最大优点是它可以回收转差功率,节能效果好,且调速性能也好,但由于线路过于复杂,增加了中间环节的电能损耗7,且成本高而影响它的推广价值。下面重点分析改变电源频率调速的方法及特点。 根据公式可知,当转差率变化不大时,异步电动机的转速n基本上与电源频率f成正比。连续调节电源频率,就可以平滑地改变电动机
11、的转速。但是,单一地调节电源频率,将导致电机运行性能恶化。随着电力电子技术的发展,已出现了各种性能良好、工作可靠的变频调速电源装置,它们促进了变频调速的广泛应用2.2 课题研究的对象 图2.1供水流程图 此次设计研究的对象是一栋楼房的供水系统。,由于高层楼对水压的要求高,在水压低时,高层用户将无法正常用水甚至出现无水的情况,水压高时将造成能源的浪费。如图2.1所示,是这栋小楼的供水流程。自来水厂送来的水先储存的水池中再通过水泵加压送给用户。通过水泵加压后,必须恒压供给每一个用户。2.2.1 变频恒压供水系统的节能原理 变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通常由异步电
12、动机驱动水泵旋转来供水,并且把电机和水泵做成一体,通过变频器调节异步电机的转速,从而改变水泵的出水流量而实现恒压供水的。因此,供水系统变频的实质是异步电动机的变频调速。异步电动机的变频调速是通过改变定子供电频率来改变同步转速而实现调速的。 在供水系统中,通常以流量为控制目的,常用的控制方法为阀门控制法和转速控制法。阀门控制法是通过调节阀门开度来调节流量,水泵电机转速保持不变。其实质是通过改变水路中的阻力大小来改变流量,因此,管阻将随阀门开度的改变而改变,但扬程特性不变。由于实际用水中,需水量是变化的,若阀门开度在一段时间内保持不变,必然要造成超压或欠压现象的出现。转速控制法是通过改变水泵电机的
13、转速来调节流量,而阀门开度保持不变,是通过改变水的动能改变流量。因此,扬程特性将随水泵转速的改变而改变,但管阻特性不变。变频调速供水方式属于转速控制。其工作原理是根据用户用水量的变化自动地调整水泵电机的转速,使管网压力始终保持恒定,当用水量增大时电机加速,用水量减小时电机减速。2.2.2 变频恒压供水系统控制流程变频恒压供水系统控制流程如下: (l)系统通电,按照接收到有效的自控系统启动信号后,首先启动变频器拖动变频泵M1工作,根据压力变送器测得的用户管网实际压力和设定压力的偏差调节变频器的输出频率,控制Ml的转速,当输出压力达到设定值,其供水量与用水量相平衡时,转速才稳定到某一定值,这期间M
14、l工作在调速运行状态。 (2)当用水量增加水压减小时,压力变送器反馈的水压信号减小,偏差变大,PLC的输出信号变大,变频器的输出频率变大,所以水泵的转速增大,供水量增大,最终水泵的转速达到另一个新的稳定值。反之,当用水量减少水压增加时,通过压力闭环,减小水泵的转速到另一个新的稳定值。(3)当用水量继续增加,变频器的输出频率达到上限频率50Hz时,若此时用户管网的实际压力还未达到设定压力,并且满足增加水泵的条件时,在变频循环式的控制方式下,系统将在PLC的控制下自动投入水泵M2(变速运行),同时变频泵M1做工频运行,系统恢复对水压的闭环调节,直到水压达到设定值为止。如果用水量继续增加,满足增加水
15、泵的条件,将继续发生如上转换,将另两台工频泵M3、M4依次投入运行,变频器输出频率达到上限频率50Hz时,压力仍未达到设定值时,控制系统就会发出水压超限报警。(4)当用水量下降水压升高,变频器的输出频率降至下限频率,用户管网的实际水压仍高于设定压力值,并且满足减少水泵的条件时,系统将工频泵M2关掉,恢复对水压的闭环调节,使压力重新达到设定值。当用水量继续下降,并且满足减少水泵的条件时,将继续发生如上转换,将另两台工频泵M3、M4根据先启先停原则依次关掉。2.3 变频恒压供水控制方式的选择 针对传统的变频调速供水设备的不足之处,国内外不少生产厂家近年来纷纷推出了一系列新型产品,如华为的TD210
16、0;施耐德公司的Altivar58泵切换卡;SANKEN的SAMCO I系列;ABB公司的ACS600、ACS400系列产品;富士公司的GIISPIIS系列产品;等等。这些产品将PID调节器以及简易可编程控制器的功能都综合进变频器内,形成了带有各种应用的新型变频器。由于PID运算在变频器内部,这就省去了对可编程控制器存贮容量的要求和对PID算法的编程,而且PID参数的在线调试非常容易,这不仅降低了生产成本,而且大大提高了生产效率。由于变频器内部自带的PID调节器采用了优化算法,所以使水压的调节十分平滑,稳定。同时,为了保证水压反馈信号值的准确、不失值,可对该信号设置滤波时间常数,同时还可对反馈
17、信号进行换算,使系统的调试非常简单、方便。2.4 变频构成恒压供水的系统及工作原理2.4.1 系统的构成 图2.2系统流程图 如图2.2所示,整个系统由三台水泵,一台变频调速器,一台PLC和一个压力传感器及若干辅助部件构成。三台水泵中每台泵的出水管均装有手动阀,以供维修和调节水量之用,三台泵协调工作以满足供水需要;变频供水系统中检测管路压力的压力传感器,一般采用电阻式传感器(反馈05V电压信号)或压力变送器(反馈420mA电流);变频器是供水系统的核心,通过改变电机的频率实现电机的无极调速、无波动稳压的效果和各项功能。2.4.2 工作原理用变频调速来实现恒压供水,与用调节阀门来实现恒压供水相比
18、,节能效果十分显著(可根据具体情况计算出来)。其优点是:)起动平衡,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击。)由于泵的平均转速降低了,从而可延长泵和阀门等的使用寿命。)可以消除起动和停机时的水锤效应。一般地说,当由一台变频器控制一台电动机时,只需使变频器的配用电动机容量与实际电动机容量相符即可。当一台变频器同时控制两台电动机时,原则上变频器的配用电动机容量应等于两台电动机的容量之和。但如在高峰负载时的用水量比两台水泵全速供水量相差很多时,可考虑适当减小变频器的容量,但应注意留有足够的容量。虽然水泵在低速运行时,电动机的工作电流较小。但是,当用户的用水量变化频繁时,电动机将处
19、于频繁的升、降速状态,而升、降速的电流可略超过电动机的额定电流,导致电动机过热。因此,电动机的热保护是必需的。对于这种由于频繁地升、降速而积累起来的温升,变频器内的电子热保护功能是难以起到保护作用的,所以应采用热继电器来进行电动机的热保护。在主要功能预置方面,最高频率应以电动机的额定频率为变频器的最高工作频率。升、降速时间在采用调节器的情况下,升、降速时间应尽量设定得短一些,以免影响由调节器决定的动态响应过程。如变频器本身具有调节功能时,只要在预置时设定功能有效,则所设定的升速和降速时间将自动失效。控制原理根据反馈原理:要想维持一个物理量不变或基本不变,就应该引这个物理量与恒值比较,形成闭环系
20、统。我们要想保持水压的恒定,因此就必须引入水压反馈值与给定值比较,从而形成闭环系统。但被控制的系统特点是非线性、大惯性的系统,现控制和相结合的方法,在压力波动较大时使用模糊控制,以加快响应速度;在压力范围较小时采用来保持静态精度。通过使用这种方法是可行的,而且造价也不高。下面介绍变频恒压供水控制系统。如图所示。其工作原理分析如下:根据管道上压力传感器所检测到的压力变化,经转换为标准的 连续电流信号,控制变频器,调整运行频率,从而实现自动调整水泵转速,已达到恒压的功能,因为是根据实际用水情况,选择水泵开动台数,调整转速让水泵始终在高效区运转,因此节能效果显著。2.5 主电路接线图 图2.3主电路
21、图由恒压供水主电路图可见,接触器1KM2、2KM2、和3KM2用于变频器输出,分别接到水泵M1、M2和M3,而接触器1KM3、2KM3和3KM3将工频电源接到3台水泵。变频器可以对任何一台水泵启动和恒压供水控制。 空气开关(QL)是当电动机过载时自动将电动机从电网中断开 热继电器(FR)是利用电流的热效应原理工作的保护电路,它在电路中用作电动机的过载保护。 2.6 系统主要设备的选型图2.4 系统的电气控制总框图2.7 PLC概述可编程控制器是60年代末在继电器系统上发展起来的,当时称作可编程逻辑控制器(Programmable Logic Controller),简称PLC。可编程控制器的产
22、生和发展与继电器控制系统有很大的关系。继电器是一种用弱电信号控制强电信号的电磁开关,但在复杂的控制系统中,故障的查找和排除非常困难,不适应于工艺要求发生变化的场合。由此,产生了可编程控制器,它是以微处理器为基础,综合了计算机技术、自动控制技术和通讯技术,用面向控制过程、面向用户的简单编程语句,适应工业环境,是简单易懂,操作方便、可靠性高的新一代通用工业控制器,是当代工业自动化的主要支柱之一。可编程控制器具有丰富的输入/输出接口,并具有较强的驱动能力,但它的产品并不针对某一具体工业应用,其灵活标准的配置能够适应工业上的各种控制。在实际应用中,其硬件可根据实际需要选用配置,其软件则需要根据要求进行
23、设计。 图2.5PLC的硬件结构框图可编程逻辑控制器,采用的是计算机的设计思想,最初主要用于顺序控制,只能进行逻辑运算。随着微电子技术计算机技术和通信技术的发展,以及工业自动化控制愈来愈高的需求,PLC无论在功能上、速度上、智能化模块以及联网通信上,都有很大的提高。现在的PLC已不只是开关量控制,其功能远远超出了顺序控制、逻辑控制的范围,具备了模拟量控制、过程控制以及远程通信等强大功能。美国电气制造商协会(NEMA)将其正式命名为可编程控制器(Programmable Controller),简称PC,但是为了和个人计算机(Persona1 Computer)的简称PC相区别,人们常常把可编程
24、控制器仍简称为PLC。 事实上与所有的器件一样,PLC本身也有其局限性,它无法向操作者显示动态的设备状态参数,无法进行大批量数据的存贮与转化,尤其是当系统工艺改变时,无法方便、快速地改变相关参数、配方。因此,在现今的稍微复杂一些的控制系统中,PLC通常与工业控制计算机配合使用,实现完整的控制功能。2.7.1 PLC的特点现代可编程控制器不仅能实现对开关量的逻辑控制,还具有数学运算、数学处理、运动控制、模拟量PID控制、通信网络等功能。在发达的工业化国家,可编程控制器已经广泛的应用在所有的工业部门,其应用已扩展到楼宇自动化、家庭自动化、商业、公用事业、测试设备和农业等领域。归纳可编程控制器主要有
25、以下几方面的优点:1)编程方法简单易学2)功能强,性能价格比高3)硬件配套齐全,用户使用方便,适应性强4)无触点免配线,可靠性高,抗干扰能力强5)系统的设计、安装、调试工作量少6)维修工作量小,维修方便 7)体积小,能耗低。2.7.2 PLC的工作过程 图2.6 PLC的扫描工作过程PLC是在系统软件的控制和指挥下,采用循环顺序扫描的工作方式,其工作过程就是程序的执行过程,它分为输入采样、程序执行和输出刷新三个阶段,如图2.6所示。2.7.3 PLC的选型 机型选择的基本原则是在满足控制功能要求的前提下,保证系统工作可靠,维护使用方便及最佳的性能价格比。 (1) 结构合理 对于工艺比较固定,环
26、境条件较好,维修量较小的场合,选用整体式结构的PLC。 (2)功能强弱适当 对于开关量控制的工程项目,若控制速度要求不高,一般选用低档的PLC,如西门子公司的S7-200系列机。 PLC容量的选择 PLC容量主要是指是PLC的I/O点数,I/O点数也应留有适当裕量。由于目前I/O点数较多的PLC价格也较高,若备用的I/O点是数量太多,将使成本增加。根据被控对象的输入信号和输出信号的总点数,并考虑到今后的调整和扩充,通常I/O点数按实际需要的考虑留10%15%点数备用量。 根据系统要求和功能,选用西门子S7-200系列的CPU224型。其有以下特点: 1) 具有14个输入点,10个输出点。 (3
27、) SIMENS S7-200可编程序控制器是模块化中小型PLC系统,能满足中等性能要求的应用。 (4) 大范围的各种功能模块可以非常好的满足和适应自动控制任务。 4) 方便用户和简易的无风扇设计。 5) 当控制任务增加时,可以自由扩展。 6) 大范围的集成功能使得它的功能非常强劲。 (5) PLC编程采用STEP7-Micro/win,它是SIMATIC PLC的视窗软件支持工具,提供完整的编程环境,可进行离线编程和在线连接和调试。2.8 变频器的选型 变频器是本系统控制执行机构的硬件,通过频率的改变实现对电机转速的调节,从而改变出水量。变频器的选择必须根据水泵电机的功率和电流进行选择。本系
28、统中要实现监控,所以变频器还应具有通讯功能。根据控制功能不同,通用变频器可分为三种类型:普通功能型U/f控制变频器、具有转矩控制功能的高功能型U/f控制变频器以及矢量控制高功能型变频器。供水系统属泵类负载,低速运行时的转矩小,可选用价格相对便宜的U/f控制变频器。根据设计的要求,本系统选用FR-A540系列变频器,2.8.1 变频器的接线管脚STF接PLC的Y7管脚,控制电机的正转。X2接变频器的FU接口,X3接变频器的OL接口。频率检测的上/下限信号分别通过OL和FU输出至PLC的X2与X3输入端作为PLC增泵减泵控制信号。2.9 水泵机组的选型 水泵机组的选型基本原则,一是要确保平稳运行;
29、二是要经常处于高效区运行,以求取得较好的节能效果。要使泵组常处于高效区运行,则所选用的泵型必须与系统用水量的变化幅度相匹配。本设计的要求为:电动机额定功率75KW,供水压力控制在0.30.01Mpa。根据本设计要求并结合实际中小区生活用水情况,最终确定确定采用3台上海熊猫机械有限公司生产的SFL系列水泵机组(电机功率75KW)。SFL型低噪音生活给水泵在外壳、轴上采用不锈钢材质,叶轮、导叶采用铸造件,经过静电喷塑处理,效率可提高5%以上;采用低噪音电机,机械密封,前端配有泄压保护装置,噪声更低(室外噪音60分贝)、磨损小、寿命更长;下轴承采用柔性耐磨轴承,噪音低,寿命长;采用低进低出的结构设计
30、,水力模型先进,性能更可靠。它可以输送清水及理化性质类似于水的无颗粒、无杂质不挥发、弱腐蚀介质,一般用在城市给排水、锅炉给水、空调冷却系统、消防给水等。本设计中选择电机功率为75KW的上海熊猫机械有限公司生产的SFL系列水泵3台。2.10 压力变送器的选型压力变送器用于检测管网中的水压,常装设在泵站的出水口,压力传感器和压力变送器是将水管中的水压变化转变为15V或420mA的模拟量信号,作为模拟输入模块(A/D模块)的输入,在选择时,为了防止传输过程中的干扰与损耗,我们采用420mA输出压力变送器。在运行过程中,当压力传感器和压力变送器出现故障时,系统有可能开启所有的水泵,而此时的用水量又达不
31、到,这就使水管中的水压上升,为了防止爆管和超高水压损坏家中的用水设备(热水器、抽水马桶等),本文中的供水系统使用电极点压力表的压力上限输出,作为PLC的一个数字量输入,当压力超出上限时,关闭所有水泵并进行报警输出。根据以上的分析,本设计中选用普通压力表Y-100和XMT-1270数显仪实现压力的检测、显示和变送。压力表测量范围01Mpa,精度1.0;数显仪输出一路420mA电流信号,送给与CPU226连接模拟量模块EM235,作为PID调节的反馈电信号,可设定压力上、下限,通过两路继电器控制输出压力超限信号。2.11 液位变送器选型考虑到水泵电机空载时会影响电机寿命,因此需要对水池水位作必要的
32、检测和控制。本设计要求贮水池水位:2m5m,所以要通过液位变送器将检测到的水位转换成标准电信号(420mA电压信号),再将其输入窗口比较器,用比较器输出的高电平作为贮水池水位的报警信号,输入PLC。综合以上因素:本设计选择淄博丹佛斯公司生产的型号为DS26分体式液位变送器,其量程为:0m200m,适用于水池、深井以及其他各种液位的测量;零点和满量程外部可调;供电电源:24VDC;输出信号:两线制420mADC精度等级:0.25级。第三部分 设计成果3.1 PLC控制软件设计采用模块化结构,由主程序,中断服务程序,A/D转换子程序和显示子程序等组成,主程序流程如图3.1所示。 图3.1 主程序流
33、程3.2编程及介绍3.2.1 总程序的顺序功能图系统分为自动运行和手动运行两部分图3.2 总程序的顺序功能图3.2.2 自动运行顺序功能图按下SB8按钮,系统进入自动运行模式,顺序功能图如4.3所示。 图3.3 自动运行顺序功能图Y0接KM0控制M1的变频运行,Y1接KM1控制M1的工频运行;Y2接KM2控制M2的变频运行,Y3接KM3控制M2的工频运行;Y4接KM4控制M3的变频运行,Y5接KM5控制M3的工频运行系统起动时,KM1闭合,#1泵以变频方式运行。 当变频器的运行频率超出一个上限信号后,PLC通过这个上限信号后将1#水泵有变频运行转为工频运行,KM1断开KM0吸合,同时KM3吸合
34、变频起动第2#水泵。如果再次接收到变频器上限信号,则KM3断开KM2吸合,第2#水泵由变频转为工频运行,3#水泵变频起动。如果变频器频率偏低,即压力过高,输出的下限信号使PLC关闭KM5、KM2,开启KM3,2#水泵变频起动。再次接到下限信号就关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。为了防止出现某台电动机既接工频电又接变频电设计了电气互锁。在同是控制M1电动机的两个接触器KM1、KM0线圈中分别串入了对方的常闭触头形成电气互锁。3.2.3 手动模式顺序功能图当按下SB9按钮,系统进入手动运行模式。系统的每步动作都必须有相应的操作。顺序功能图如图3.4所示。 图4.4 自动运行顺序
35、功能图按下按钮SB9之后,启动了变频器,系统进入手动运行模式。当用户按下SBn(n=1,3,5)三台电机分别处于工频运行,当用户按下SBn(n=2,4,6)三台电机分别处于变频运行。可以多台电机于不同的频率工作,但一台电机只能以一种频率下工作。(如#1电机,如果控制它工作的SB1,SB2按钮被同时按下则发出警报且电机无法起动。)3.2.4 程序说明(1)自动运行部分。起动1#泵按下起动按钮,系统检测采用那种运行模式。如果按钮SB7没按,则使用自动运行模式。变频起动1#水泵。起动1#,2#泵:接收到变频器上限信号,PLC通过这个上限信号后将1#水泵由变频运行转为工频运行,KM1断开KM0吸合,同
36、时KM3吸合变频起动第2#水泵。起动1#,2#,3#泵:再次接收到变频器上限信号,则KM3断开KM2吸合,第2#水泵由变频转为工频运行,3#水泵变频起动。起动1#泵:接到下限信号就关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。起动1#,2#泵:输出的下限信号使PLC关闭KM5、KM2,开启KM3,2#水泵变频起动。起动1#泵:接到下限信号关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。 (2)手动运行部分按下手动起动按钮SB10,手动起动变频器。按下SB2,断开KM0,在10个计数脉冲后起动M1在变工频电源下运行。按下SB4,断开KM2,在10个计数脉冲后起动M2在变频电源下运行
37、。按下SB6,断开KM4,在10个计数脉冲后起动M3在变频电源下运行。按下SB1,断开KM1,在10个计数脉冲后起动M1在工频电源下运行。按下SB3,断开KM3,在10个计数脉冲后起动M2在工频电源下运行。按下SB5,断开KM5,在10个计数脉冲后起动M3在工频电源下运行。(3)公用部分当热继电器断开系统报警。电机只能在一种频率下运行,当电机工频/变频同时打开时将发出警报且电机停止运行。辅助继电器M1,M2,M3,M9依次控制输出继电器Y0,Y1,Y2,Y10按下停止按钮,所有泵停止运行。第四部分 结束语 本论文研究的是变频恒压供水系统。恒压供水系统以PLC和变频器为核心进行设计,借助于PLC
38、强大而灵活的控制功能和内置PID的变频器优良的变频调速性能,实现了恒压供水的控制。该系统采用PCL控制变频器进行PID调节,按实际需要随意设定压力给定值,根据压差调整水泵的工作情况,实现恒压供水,使给水泵始终在高效率下运行,在启动时压力波动小,可控制在给定值的5%范围内。恒压供水在日常生活中非常重要,基于PLC和变频器技术设计的生活恒压供水控制系统可靠性高、效率高、节能效果显著、动态响应速度快。因实现了恒压自动控制,不需要操作人员频繁操作,节省了人力,提高了供水质量,减轻了劳动强度,可实现无人值班,节约管理费用。对整个供水过程来说,系统的可扩展性好,管理人员可根据每个季节的用水情况,选择不同的
39、压力设定范围,不但节约了用水,而且节约了电能,达到了更优的节能方式,实现供水的最优化控制和稳定性控制。 目前在国内外变频调速恒压供水控制系统的研究设计中,对于能适应不同的用水场合,结合现代控制技术、网络和通讯技术同时兼顾系统的电磁兼容性(EMC)的变频但压供水系统的水压闭环控制的研究还是不够的。因此,有待于进一步研究改善变频恒压供水系统的性能,使其能被更好的应用于生活、生产实践中。第五部分 致谢 首先衷心的感谢我的论文指导老师。老师渊博的学识,优秀的师德,深厚的学术造诣和严谨的治学态度使我受益匪浅。 在整个论文工作中,老师为我提供了大量的研究资料,并给予了精心指导,从开题到实验研究到论文撰写,
40、提出了很多非常好的意见和建议。老师给了我全方位的精心指导,严格把关、不倦教诲,为我付出了许多辛劳和汗水同时老师严谨的治学态度、忘我的工作精神和朴实谦和的作风时刻感染着我,成为我学习的典范,使我受益匪浅、终生难忘。在此特向老师表示深深的谢意和崇高的敬意。 第六部分 参考文献1王永华现代电气控制及PLC应用技术北京:北京航空航天大学出版社,2003年2张万忠可编程控制器入门与应用实例北京:中国电力出版社,2005年3田淑珍可编程控制器原理及应用北京:机械工业出版社,2005.年4陈其纯可编程序控制器应用技术北京:高等教育出版社,2000年5张燕宾变频调速应用实践北京:机械工业出版社,2001年6廖
41、常初PLC编程及应用北京:机械工业出版社,2008年7林俊赞,李雄松,尹元日在恒压供水控制系统中的应用电机电器技术,1999年8李敬梅电力拖动控制线路与技能训练北京:中国劳动社会保障出版社,2007年9 邓星钟主编.机电传动控制 M.华中科技大学出版社,2002.510 S7-200中文系统手册 M.西门子公司,2002.6 11 廖常初主编.PLC编程及应用 M.机械工业出版社,2002.4 12 金以慧主编.过程控制 M.清华大学出版社,1993.4 13 王永华主编.现代电气控制及PLC应用技术 M.北京航天航社,2003.514 王占奎主编.变频调速应用百例 M.科学出版社,1999.4 15 赵永键主编.单片机变频调速恒压供水系统 M,1996.2 16 常斗南主编.李全利.可编程序控制器原理、应用、实验 M.1998.11。