1、复变函数考试试题(一)一、 判断题(20分):1.若f(z)在z0的某个邻域内可导,则函数f(z)在z0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若收敛,则与都收敛. ( ) 4.若f(z)在区域D内解析,且,则(常数). ( ) 5.若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z0是的m阶零点,则z0是1/的m阶极点. ( ) 7.若存在且有限,则z0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D内的单叶函数,则. ( ) 9. 若f(z)在区域D内解析, 则对D内任一简单闭曲线C.( ) 10.若函数f(z)
2、在区域D内的某个圆内恒等于常数,则f(z)在区域D内恒等于常数.( )二.填空题(20分)1、 _.(为自然数)2. _.3.函数的周期为_.4.设,则的孤立奇点有_.5.幂级数的收敛半径为_.6.若函数f(z)在整个平面上处处解析,则称它是_.7.若,则_.8._,其中n为自然数.9. 的孤立奇点为_ .10.若是的极点,则.三.计算题(40分):1. 设,求在内的罗朗展式.2. 3. 设,其中,试求4. 求复数的实部与虚部.四. 证明题.(20分)1. 函数在区域内解析. 证明:如果在内为常数,那么它在内为常数.2. 试证: 在割去线段的平面内能分出两个单值解析分支, 并求出支割线上岸取正
3、值的那支在的值.复变函数考试试题(一)参考答案一 判断题12 610二填空题1. ; 2. 1; 3. ,; 4. ; 5. 16. 整函数; 7. ; 8. ; 9. 0; 10. .三计算题.1. 解 因为 所以 .2. 解 因为 ,.所以.3. 解 令, 则它在平面解析, 由柯西公式有在内, . 所以.4. 解 令, 则 . 故 , .四. 证明题.1. 证明 设在内. 令. 两边分别对求偏导数, 得 因为函数在内解析, 所以. 代入 (2) 则上述方程组变为. 消去得, .1) 若, 则 为常数.2) 若, 由方程 (1) (2) 及 方程有 , .所以. (为常数).所以为常数.2. 证明的支点为. 于是割去线段的平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支. 由于当从支割线上岸一点出发,连续变动到 时, 只有的幅角增加. 所以的幅角共增加. 由已知所取分支在支割线上岸取正值, 于是可认为该分支在上岸之幅角为0, 因而此分支在的幅角为, 故.