资源描述
个人收集整理 勿做商业用途
八年级寒假新课预习 一次函数
一、变量
学习目标:1、通过探索具体问题中的数量关系和变化规律来了解常量、变量的意义;
2、学会用含一个变量的代数式表示另一个变量;
学习重点:了解常量与变量的意义;
学习难点:较复杂问题中常量与变量的识别
学习过程:
一, 提出问题,创设情景
问题一:汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.
1.请同学们根据题意填写下表:
t/时
1
2
3
4
5
t
s/千米
2.在以上这个过程中,变化的量是_____________.不变化的量是__________.
3.试用含t的式子表示s: s=________,t的取值范围是 _________ 。
这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.
二, 深入探究,得出结论
(一)问题探究:
问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.
1.请同学们根据题意填写下表:
售出票数(张)
早场150
午场206
晚场310
x
收入y (元)
2.在以上这个过程中,变化的量是_____________.不变化的量是__________.
3.试用含x的式子表示y: y=______ ,x的取值范围是 。
这个问题反映了票房收入_________随售票张数_________的变化过程.
问题三:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,设重物质量为mkg,受力后的弹簧长度为L cm。
1.请同学们根据题意填写下表:
所挂重物(kg)
1
2
3
4
5
m
受力后的弹簧长度L(cm)
2.在以上这个过程中,变化的量是_____________.不变化的量是__________.
3.试用含m的式子表示L: L=____________ ,m的取值范围是 。
这个问题反映了_________随_________的变化过程.
问题四:要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?30 cm2呢?怎样用含有圆面积S的式子表示圆半径r?
1.请同学们根据题意填写下表:(用含的式子表示)
面积s(cm2)
10
20
30
s
半径r(cm)
2.在以上这个过程中,变化的量是_____________.不变化的量是__________.
3.试用含s的式子表示r.r=_________,s的取值范围是 .
这个问题反映了___ _ 随_ __的变化过程.
问题五:用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。设矩形的长为xm,面积为Sm2 .
1.请同学们根据题意填写下表:
长x(m)
4
3
2。5
2
x
另一边长(m)
面积s(m2)
2.在以上这个过程中,变化的量是_____________.不变化的量是__________.
3.试用含x的式子表示s. S=__________________,x的取值范围是 。
这个问题反映了矩形的___ _ 随_ __的变化过程.
小结:以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的,有些量的数值是始终不变的。
(二)得出结论: 在一个变化过程中,我们称数值发生变化的量为________;
在一个变化过程中,我们称数值始终不变的量为________;
三、课堂检测,及时反馈
1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系是 ( )
A.Q=8x B.Q=8x-50 C.Q=50-8x D.Q=8x+50
2.甲、乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=S,在这个变化过程中,下列判断中错误的是 ( )
A.S是变量 B.t是变量 C.v是变量 D.S是常量
3.在一个变化过程中,__________________的量是变量,________________的量是常量.
4.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y.
份数/份
1
2
3
4
5
6
7
100
价钱/元
x与y之间的关系是y=______,在这个变化过程中,常量___________,变量是___________.
5.长方形相邻两边长分别为x、y,面积为30,则用含x的式子表示y为:y=_______,则这个问题中,___________常量;_________是变量.
6.写出下列问题中的关系式,并指出其中的变量和常量.
(1)用20cm的铁丝所围的长方形的长x(cm)与面积S(cm2)的关系.
(2)直角三角形中一个锐角α与另一个锐角β之间的关系.
(3)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t(小时)表示水箱中的剩水量y(吨).
二、函数及其图象
【学习目标】:
(一)知道函数图象的意义;
(二)能画出简单函数的图象,会列表、描点、连线;
(三)能从图象上由自变量的值求出对应的函数的近似值。
【学习重难点】:
认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。
【自学指导】:
一 、学生看P99—--P104并思考一下问题:
什么是函数图像?( 函数的图象是由直角坐标系中的一系列点组成,图象上的每一点坐标(x,y)代表了函数的一对对应值,即把自变量x与函数y的每一对对应值分别作为点的横坐标和纵坐标,在直角坐标系中描出相应的点,这些点组成的图形,就是这个函数的图象。)
如何作函数图像?具体步骤有哪些?
如何判定一个图像是函数图像,你判断的依据是什么?
有哪些方法表示函数关系?各自的优缺点是什么?
二,自学检测:
1.图17—4是北京市某日的气温变化图,从图中我们可以获得信息,例如:
(1)这天2时的气温是4℃;
(2)这天的最高气温为11.8℃;
(3)这天的最低气温是1.8℃;
(4)这一天中,从凌晨4时到14时气温在逐渐升高.
除以上4条信息外,请你从图中再写出4条信息来.
答:①_______________________________________________________
②___________________________________________________________
③___________________________________________________________
④___________________________________________________________
2等腰△ABC的周长为10cm,底边BC的长为ycm,腰AB的长为xcm。
(1)写出y关于x的函数关系式 (2)求x的取值范围
(3)求y的取值范围 (4)画出函数的图象
三、探讨,总结:
l 正确理解函数图象与实际问题间的内在联系
函数的图象是由一系列的点组成,图象上每一点的坐标(x,y)代表了该函数关系的
一对对应值。
1、读懂横、纵坐标分别所代表的实际意义;
2、读懂两个量在变化过程中的相互关系及其变化规律。
l 这三种表示函数的方法各有优缺点。
1.用解析法表示函数关系
优点:简单明了。能从解析式清楚看到两个变量之间的全部相依关系,并且适合进行理论分析和推导计算。
缺点:在求对应值时,有时要做较复杂的计算。
2.用列表表示函数关系
优点:对于表中自变量的每一个值,可以不通过计算,直接把函数值找到,查询时很方便。
缺点:表中不能把所有的自变量与函数对应值全部列出,而且从表中看不出变量间的对应规律。
3.用图象法表示函数关系
优点:形象直观,可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念形象化。
缺点:从自变量的值常常难以找到对应的函数的准确值.
函数的三种基本表示方法,各有各的优点和缺点,因此,要根据不同问题与需要,灵活地采用不同的方法.在数学或其他科学研究与应用上,有时把这三种方法结合起来使用,即由已知的函数解析式,列出自变量与对应的函数值的表格,再画出它的图象。
四、提高练习:
1.若点p在第二象限,且p点到x轴的距离为,到y轴的距离为1,则p点的坐标是( )A.(-1,) B.(-,1) C。(,-1) D。(1,-)
2.下列函数中,自变量取值范围选取错误的是( )
A. 中,x取全体实数 B. 中,
C. 中, D. 中,
六、作业与学后反思:
1.(常州市,2000)小明的父亲饭后出去散步,从家中走20分钟到一个离家900米的报亭看10
分钟报纸后,用15分钟返回家里.图中表示小明的父亲离家的时间与距离之间的关系是( ).
2.某运动员将高尔夫球击出,描绘高尔夫球击出后离原处的距离与时间的函数关系的图像可能为( ).
3.飞机起飞后所到达的高度与时间有关,描绘这一关系的图像可能为( ).
4假定甲、乙两人在一次赛跑中,路程S与时间T的关系在平面直角坐标系中所示,如图,请结合图形和数据回答问题:
(1)这是一次 米赛跑;(2)甲、乙两人中先到达终点的是 ;
(3)乙在这次赛跑中的速度为 ;
(4)甲到达终点时,乙离终点还有 米。
数形结合是研究函数图像性质的最重要的思想方法,学生学会作图及其重要,特别是对于中下层次的学生,往往对书本上所概括出来的性质不容易记住,所以通过直观图像去做有关习题应是首选方法。但以往比较偏重于结论得出与应用,忽视在整章教学中应始终提倡学生数形结合,导致学生对有关的结论死记硬背,缺乏理解,张冠李戴,而且后期学生对作图不熟悉,造成学习上困难
三、正比例函数
【学习目标】
1、理解正比例函数的概念及其图象的特征
2、能够画出正比例函数的图象
3、能够判断两个变量是否能够构成正比例函数关系
4、能够利用正比例函数解决简单的数学问题
【重 点】正比例函数的概念
【难 点】正比例函数性质
【课前准备】
1、还记得描点法画函数图象的一般步骤吗?
①______________,②___________________③____________________
2、细读课本110-111页,完成课本111页的“思考”,试着写出函数解析式:
⑴ ; ⑵ ; ⑶ ; ⑷ 。
【学习流程】
一、正比例函数的概念
观察“思考”中所得的四个函数;
(1)观察这些函数关系式,这些函数都是常数与自变量 的形式,
(2)一般地,形如 ( )函数,叫做正比例函数,其中叫做 。
思考:为什么强调K是常数,K≠0 ?
(3)、列举日常生活中正比例函数的模型,你知道多少?
练一练
(1)、下列函数哪些是正比例函数?
① y= ② y= ③ y=-+1 ④ y=2x ⑤y=x+1 ⑥ y=(a+1)x+2
(2)、若y=5x是正比例函数,则m=___________。
(3)、若y=(m-2)x是正比例函数,则m=____________。
二、正比例函数图像的画法与性质
(一)、用描点法画出下列函数的图像
(1)、 y=2x (2)、 y=-2x
解:(1)列表得: 解:(1)列表得:
…
-3
—2
—1
0
1
2
3
…
y=2x
…
…
x
…
-3
—2
—1
0
1
2
3
…
y=2x
…
…
(2)描点、连线: (2)描点、连线:
(3)、 y=0。5x (4)、 y=—0。5x
解:(1)列表得: 解:(1)列表得:
…
-3
-2
-1
0
1
2
3
…
y=2x
…
…
x
…
-3
—2
-1
0
1
2
3
…
y=2x
…
…
(2)描点、连线: (2)描点、连线:
(二)、活动二:观察上题画函数,完成下列问题
(1)正比例函数是一条 ,它一定经过 。
(2)因为过 点有且只有一条直线,我们在画正比例函数图象时,只需确定两点,通常是( , )和( , )
(3)当k 〉 0时,直线经过 象限,随的增大而
当k<0时,直线经过 象限,随的减小而
板块三、知识升华
既然正比例函数的图像是一条直线,那么最少几个点就可以画出这条直线?怎样画最简单?
试一试:用最简单的方法画出下列函数的图像
(1)、 y=-3x (2) y=x
解:(1)当x=_____时,y=_____, 解:
当x=_____时,y=_____,
取点_______和_________,
(2)描点、连线得:
收获乐园
本节课你有哪些收获?请在小组内交流。
随堂练习
1、 汽车以40千米/时的速度行驶,行驶路程y(千米)与行驶时间x(小时)之间的函数解析式为___________________。y是x的_______函数。
2、 圆的面积y(cm)与它的半径x(cm)之间的函数关系式是________________。y是x的_______函数.
3、 函数y=kx(k≠0)的图像过P(—3,7),则k=____,图像过_____象限。
4、 y=, y=, y=3x+9, y=2x中,正比例函数是____________.
5、 在函数y=2x的自变量中任意取两个点x,x,若x<x,则对应的函数值y与y的大小关系是y___y.
6、 表示函数y=—kx(k<0)的图像是( ).
A B C D
7、若y与x—1成正比例,x=8时,y=6。写出x与y之间的函数关系式,并分别求出x=4和x=-3时的值
8、若y=y+y,y与x成正比例,y与x-2成正比例,当x=1时,y=0,当x=—3时,y=4.求当x=3时的函数值.
讨论交流
问题:观察并比较:
1、两个函数图家象的相同点与不同点和变化规律
2、正比例函数是过原点的一条直线,其变化规律是否与有关?
三、 巩固提升
1、下列函数中,哪些是正比例函数?
2、(1)若是正比例函数,则=
(2)若函数是关于的正比例函数,则=
3、已知函数是关于的正比例函数
(!)求正比例函数的解析式
(2)画出它的图象
(3)若它的图象有两点,当时,试比较的大小
课题:2.2 一次函数和它的图象(1)(44课时)
编写
审核
授课
学习目标
Ø知识目标:1、理解正比例函数、一次函数的概念。
2、会根据数量关系,求正比例函数、一次函数的解析式。
3、会求一次函数的值。
Ø能力目标:应用函数的思想观察现实世界中的函数关系
Ø情感目标: 形成从一般到特殊的思维习惯,探索创新,感受成功的乐趣。
学习重点
一次函数、正比例函数的概念和解析式.
学习难点
根据已知信息写出一次函数的表达式,确定自变量的取值范围
一. 独立思考,复习反馈
(一)说一说:函数的概念及函数的判断方法
(二)填一填;
1。汽车以60 km/h的速度匀速行驶,行驶路程S(km)与汽车行驶的时间t(h)之间的函数解析式为__________________。
2.一颗树现在高60 cm,每个月长高2 cm,x月之后这棵树的高度为h cm,则h关于x的函数解析式为___________________.
3。汽车开始行驶时,邮箱内有油50升,如果每小时耗油5升,则邮箱内剩余油量Q(升)与行驶时间t(时)的函数解析式为_________________。
4.在Rt△ABC中,∠C=90°,设∠A= x°,∠B= y°,则y 关于x的解析式为_______.
二。 师生合作,共探新知
(一)一次函数,正比例函数的一般形式
1.比较下列各函数解析式,它们有哪些共同特征?
特征:(1) 等号两边的代数式都是( );
(2) 自变量的次数是( )。
2.定义____________________________________________________________
___________________________________________________________________.
3.小练下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?(1) (2) (3) 4) (5) (6)y=x
4.反思:(1)正比例函数与一次函数的联系与区别;
(2)正比例函数与小学学的“两个量成正比”的联系与区别;
(二)理解一次函数y=kx=b(k0)的特征
已知一次函数y=1。6x+5
1、 填表:
X
—2
—1
0
1
2
3
4
……
Y
……
2。填空:观察上表发现:当自变量x的值每增加1时,函数值y的变化规律是_____________________________,
3.合作结论:一般地, 一次函数y=kx=b(k0)自变量的值每增加1时,函数值都_________,这说明一次函数的函数值是随着自变量_________。
(三)一次函数自变量取值范围的确定
(1) 一般地, 一次函数y=kx=b(k0)自变量的取值范围是怎样的?
(2) 学案开头4个函数的自变量取值范围又是怎样的?请说出来。
三 生生合作,巩固新知:
例1:一辆公共汽车在加油前油箱里还剩8L汽油,已知加油枪的流量为12L/min,若加油时间为x (min),
1) 请写出此时油箱中的油量y(L)与x (min)的函数关系式;
2) 若加油5min,则油箱中有多少升汽油?
例2:为了圆满完成2008年奥运会火炬的传递,奥运火炬手们从珠穆朗玛峰的北坡营地出发向峰顶发起冲击。已知奥运火炬手们出发地的气温为1C,当他们向上冲击时,海拔每升高1km,气温则下降6C,
(1) 你能用解析式表示他们所在位置的温度y与向上登山的高度x之间的关系吗?
(2) 若火炬手们向上登高了0。2km,则他们所在位置的温度为多少?
四.总结反思,拓展升华:
1、一次函数、正比例函数的概念及关系。
2、能根据已知简单信息,写出一次函数的表达式。
五.当堂检测,效果评价:
1。下列函数中,y是x的一次函数的是( )
①y=x—6;②y=;③y=;④y=7-x
A、①②③ B、①③④ C、①②③④ D、②③④
2 .写出下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?
(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);
(2)一边长为8(cm)的平行四边形的周长L(cm)与另一边长b(cm);
(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;
(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).
(5)汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;
(6)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;
(7)一棵树现在高50厘米,每个月长2厘米,x月后这棵树的高为y(厘米)
六.作业
1、下列说法不正确的是( )
(A)一次函数不一定是正比例函数 (B)不是一次函数就一定不是正比例函数
(C)正比例函数是特定的一次函数 (D)不是正比例函数就不是一次函数
2、已知函数y=(2-m)x+2m—3.求当m为何值时,
(1)此函数为一次函数?
(2)此函数为正比例函数?
3、一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米。
(1)求小球速度v随时间t变化的函数关系式,它是一次函数吗?
(2)求第2.5秒时小球的速度?
4。 一种移动通讯服务的收费标准为:每月基本服务费为30元,每月免费通话时间为120分,以后每分收费0.4元.
(1)写出每月话费y元与通话时间x(x>120)的函数关系式;
(2)分别求每月通话时间为100分,200分的话费。
思考题:
某种气体在0℃时的体积为100L,温度每升高1℃,它的体积增加0。37L。
(1)写出气体体积V(L)与温度t(℃)之间的函数解析式;
(2)求当温度为30℃时气体的体积。
(3)当气体的体积为107.4L时,温度为多少摄氏度?
学习(教学)札记
学习(教学)札记
更正
(我为什么错了)
更正
(我为什么错了)
课题:14。2。2 一次函数和它的图象(2)(45课时)
【学习目标】:本节课通过两个例题探索一次函数的图象及其性质,发展抽象的数学思维.能用“两点法”画出一次函数的图象.结合图象,理解直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响。
【学习过程】:
一、回顾交流,揭示课题
【复习提问】
一次函数的概念
二、范例点击,实践操作
你们知道一次函数是什么形状吗? 那就让我们一起做一做,看一看.
【例2】画出函数y=—6x,y=—6x+5,y=-6x-5的图象(在同一坐标系内).
【思考】请你比较上面三个函数的图象的相同点与不同点,填出你的观察结果:
这三个函数的图象形状都是 ,并且倾斜程度 ;函数y=—6x的图象经过(0,0);函数y=-6x+5的图象与y轴交于点 ,即它可以看作由直线y=-6x向 平移 个单位长度而得到的;函数y=—6x-5的图象与y轴交点是 ,即它可以看作由直线y=—6x向 平移 个单位长度而得到的;比较三个函数解析式,试解释这是为什么?
【猜想】联系上面例2,考虑一次函数y=kx+b的图象是什么形状,它与直线y=kx有什么关系?
归纳平移法则:
一次函数y=kx+b的图象是一条 ,我们称它为直线y=kx+b,它可以看作由直线y=kx平移 个单位长度而得到(当b〉0时,向 平移;当b〈0时,向 平移).
对于一次函数y=kx+b(其中k)b为常数,k≠0)的图象——直线,你认为有没有更为简便的方法
三、合作学习,操作观察
例2 :分别画出下列函数的图像 (在练习本中完成)
(1) (2) (3) (4)
分析:由于一次函数的图像是直线,所以只要确定两个点就能画出它,一般选取直线与x轴,y轴的交点。
(1) (2) (3) (4)
※ 观察上面四个图像,(1)经过_________象限;y随x的增大而_______,函数的图像从左到右________;(2)经过_________象限;y随x的增大而_______,函数的图像从左到右________;(3)经过_________象限;y随x的增大而_______,函数的图像从左到右________;(4)经过_________象限;y随x的增大而_______,函数的图像从左到右________。
1、由此可以得到直线中,k ,b的取值决定直线的位置:
(1)直线经过___________象限;
(2)直线经过___________象限;
(3)直线经过___________象限;
(4)直线经过___________象限;
2、一次函数的性质:
(1)当时,y随x的增大而_______,这时函数的图像从左到右_______;
(2)当时,y随x的增大而_______,这时函数的图像从左到右_______;
四、课堂总结,发展潜能
1.一次函数y=kx+b图象的画法:在y轴上取(0,b)在x轴上取点(- ,0),过这两点的直线即所求图象.
2.一次函数y=kx+b的性质.
五、练习
1、一次函数的图像不经过( )
A、第一象限 B、第二象限 C、 第三想象限 D、 第四象限
2、已知直线不经过第三象限,也不经过原点,则下列结论正确的是( )
A、 B、 C、 D、
3、下列函数中,y随x的增大而增大的是( )
A、 B、 C、 D、
4、对于一次函数,函数值y随x的增大而减小,则k的取值范围是( )
A、 B、 C、 D、
5、一次函数的图像一定经过( )
A、(3,5) B、(—2,3) C、(2,7) D、(4、10)
6、已知正比例函数的函数值y随x的增大而增大,则一次函数的图像大致是( )
7、一次函数的图像如图所示,则k_______,
b_______,y随x的增大而_________
8、一次函数的图像经过___________象限,
y随x的增大而_________ (第6题)
9、已知点(—1,a)、(2,b)在直线 上,则a,b的大小关系是__________
10、直线与x轴交点坐标为__________;与y轴交点坐标_________;图像经过__________象限,y随x的增大而____________,图像与坐标轴所围成的三角形的面积是___________
11、已知一次函数的图像经过点(0,1),且y随x的增大而增大,请你写出一个符合上述条件的函数关系式_____________
12、已知一次函数图像(1)不经过第二象限,(2)经过点(2,-5),请写出一个同时满足(1)和(2)这两个条件的函数关系式:_______________
13.y=3x与y=3x-3的图象在同一坐标系中位置关系是( )
A.相交 B.互相垂直 C.平行 D.无法确定
14.在函数y=kx+3中,当k取不同的非零实数时,就得到不同的直线,那么这些直线必定( )
A、交于同一个点 B、互相平行
C、有无数个不同的交点 D、交点的个数与k的具体取值有关
15.函数y=3x+b,当b取一系列不同的数值时,它们图象的共同点是( )
A、交于同一个点 B、互相平行
C有无数个不同的交点 D、交点个数的与b的具体取值有关
课题:14.2。2 一次函数和它的图象(3)(46课时)
一、【学习目标】:本节课主要探究一次函数的解析式,介绍待定系数法求一次函数解析式的方法.体会二元一次方程组的实际应用.
二、学习过程:
例1:已知一次函数的图像经过点(3,5)与(2,3),求这个一次函数的解析式。
分析:求一次函数的解析式,关键是求出k,b的值,从已知条件可以列出关于k,b的二元一次方程组,并求出k,b.
解: ∵一次函数经过点(3,5)与(2,3)
∴
解得
∴一次函数的解析式为_______________
像例1这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个
式子的方法,叫做待定系数法.
练习:
1、已知一次函数,当x = 5时,y = 4,
(1)求这个一次函数。 (2)求当时,函数y的值。
2、已知直线经过点(9,0)和点(24,20),求这条直线的函数解析式.
3、已知弹簧的长度 y(厘米)在一定的限度内是所挂重物质量 x(千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7。2厘米.求这个一次函数的关系式.
例2:地表以下岩层的温度t(℃)随着所处的深度h(千米)的变化而变化,t与h之间在一定范围内近似地成一次函数关系。
深度(千米)
……
2
4
6
……
温度(℃)
……
90
160
300
……
1、根据上表,求t(℃)与h(千米)之间的函数关系式;
2、求当岩层温度达到1700℃时,岩层所处的深度为多少千米?
三、课堂总结,发展潜能
根据已知的自变量与函数的对应值,可以利用待定系数法确定一次函数解析式,具体步骤如下:
1.设出函数解析式的一般形式,其中包括未知的系数(需要确定这些系数,因此叫做待定系数).
2.把自变量与函数的对应值(可能是以函数图象上点的坐标的形式给出)代入函数解析式中,得到关于待定系数的方程或方程组.(有几个待定系数,就要有几个方程)
3.解方程或方程组,求出待定系数的值,从而写出所求函数的解析式.
四、练习
1.一次函数的图象经过点A(—2,-1),且与直线y=2x—3平行,则此函数的解析式为( )
A.y=x+1 B.y=2x+3 C.y=2x—1 D.y=—2x—5
2.已知一次函数y=kx+b,当x=1时,y=2,且它的图象与y轴交点的纵坐标是3,则此函数的解析式为( )
A.0≤x≤3 B.-3≤x≤0 C.-3≤x≤3 D.不能确定
3、大拇指与小拇指尽量张开时,两指尖的距离称为指距。某研究表明,一般人的身高h时指距d的一次函数,下表中是测得的指距与身高的一组数据:
指距d(cm)
20
21
22
23
身高h(cm)
160
169
178
187
求出h与d之间的函数关系式:
某人身高为196cm,则一般情况下他的指距应为多少?
4.若一次函数y=bx+2的图象经过点A(-1,1),则b=__________.
14。2.2一次函数应用(4)(47课时)
[学习目标]:会根据题意求出分段函数的解析式,并能利用分段函数图形解决有关实际问题
[重点]:分段函数的初步认识与简单多变量问题的解决
[难点]:数学建模的过程、思想、方法的领会
一、自学引入:小明家距学校3千米,星期一早上,小明步行按每小时5千米的速度去学校,行走1千米时,遇到学校送学生的班车,小明乘坐班车以每小时20千米的速度直达学校,则小明上学的行程s关于行驶时间的函数的图像大致是下图中的 ( )
小明运动的路程图像又是什么函数的图像呢?这种函数的解析式应该怎样来表示呢?
二、探
展开阅读全文