收藏 分销(赏)

二次函数-数形结合.doc

上传人:a199****6536 文档编号:2263705 上传时间:2024-05-24 格式:DOC 页数:10 大小:706.20KB
下载 相关 举报
二次函数-数形结合.doc_第1页
第1页 / 共10页
二次函数-数形结合.doc_第2页
第2页 / 共10页
点击查看更多>>
资源描述
明德致远 止于至善 课程标题 学习目标 复习二次函数图像知识 总结二次函数的综合题 重点与难点 二次函数的图像 二次函数的数形结合问题 学习过程 ※ 学习探究 二次函数单独出现时不会很难,但为了达到综合考查的目的,二次函数往往会和几何类的知识一起综合出现,常见的有:直角三角形、等腰三角形、平行四边形、矩形、等腰梯形、菱形....等。 下面就关于各种图形结合实例进行一一例讲: 一、 和三角形结合 1.如图,抛物线和直线 ()与轴、y轴都相交于A、B两点,已知抛物线的对称轴与轴相交于C点,且∠ABC=90°,求抛物线的解析式. 2.如图1-2-24,△OAB是边长为2+的等边三角形,其中O是坐标原点,顶点B在y轴的正方向上,将△OA B折叠,使点A落在边OB上,记为A′,折痕为EF. (1)当A′E∥x轴时,求点A′和E的坐标; (2)当A′E∥x轴,且抛物线经过点A′和E时,求该抛物线与x轴的交点的坐标; (3)当点A′在OB上运动但不与点O、B重合时,能否使△A′EF成为直角三角形.若能,请求出此时点A′的坐标;若不能,请你说明理由. 3.已知:如图1-2-27所示,直线y=-x+3与x 轴、 y轴分别交于点B、C,抛物线y=-x2+bx+c经过点B、C,点A是抛物线与x轴的另一个交点. (1)求抛物线的解析式; (2)若点P在直线BC上,且SΔPAC=SΔPAB,求点P的坐标. 4.在ΔABC中,∠ABC=90○ ,点C在x轴正半轴上,点A在x轴负半轴上,点B在y轴正半轴上(图1-2-26所示),若 tan∠BAC= ,求经过 A、B、C点的抛物线的解析式 5.在直角坐标系xoy中O是坐标原点,抛物线y=x2-x-6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,如图l-2-45,如果点M在y轴右侧的抛物线上, S△AMO= S△COB,那么点M的坐标是_______- 6.如图1-2-50,教师提出:如图A(1,0),AB=OA,过点A、B作x轴的垂线交二次函数的图象于C、D两点,直线OC交BD于点M,直线CD交y轴于点H,记点C、D的横坐标分别为,点H的纵坐标为。同学讨论发现: ①2 :3 ② ⑴请你验证①②结论成立; ⑵请你研究:如将上述条件“A(1,0)”改为“A”,其他条件不娈,结论①是否仍成立? ⑶进一步研究:在⑵的条件下,又将条件“”改为“,其他条件不娈,那么和yH有怎样的数值关系?(写出结果并说明理由) 7.已知,如图抛物线与y轴交于C点,与x轴交于A、B两点,A点在B点左侧。点B的坐标为(1,0),OC=30B. (1)求抛物线的解析式; (2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值: (3)若点E在x轴上,点P在抛物线上。是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由. 8.如图所示,在平面直角坐标系中,抛物线y=ax 2+bx+c(a≠0).经过A(-1,0)、B(3,0)、C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE. (1)求抛物线的解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值; O A D E C B P -1 -3 -2 -1 -2 3 -1 1 2 3 x y (3)在(2)的条件下,当s取得最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P′ ,请直接写出P′ 点坐标,并判断点P′ 是否在该抛物线上. 9.如图,已知抛物线y=ax 2+bx-4与直线y=x交于点A、B两点,A、B的横坐标分别为-1和4. (1)求此抛物线的解析式. (2)若平行于y轴的直线x=m(0<m<+1)与抛物线交于点M,与直线y=x交于点N,交x轴于点P,求线段MN的长(用含m的代数式表示). (3)在(2)的条件下,连接OM、BM,是否存在m的值,使得△BOM的面积S最大?若存在,请求出m的值,若不存在,请说明理由. A B M P O N x y x=m y=x 10.如图,已知二次函数 的图象与x轴的正半轴相交于点A、B, 与y轴相交于点C,且. (1)求c的值; (2)若△ABC的面积为3,求该二次函数的解析式; (3)设D是(2)中所确定的二次函数图象的顶点,试问在直线AC上是否存在一点P使△PBD的周长最小?若存在,求出点P的坐标;若不存在,请说明理由. 11.如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6. ⑴求二次函数的解析式; ⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; ⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由. 12.一开口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点为C,且AC⊥BC. (1)若m为常数,求抛物线的解析式; (2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点? 第12题图 (3)设抛物线交y轴正半轴于D点,问是否存在实数m,使得△BCD为等腰三角形?若存在,求出m的值;若不存在,请说明理由. 二、 和四边形结合 1.若抛物线与四条直线、、、所围成的正方形有公共点,则的取值范围是 . 2.如图,有一块铁皮,拱形边缘呈抛物线状,MN=4分米,抛物线顶点处到边MN的距离是4分米,要在铁皮上截下一矩形ABCD,使矩形顶点B、C落在边MN上,A、D落在抛物线上,问这样截下的矩形铁皮的周长能否等于8分米? 3.已知二次函数(a≠0)与一次函数y=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),如图1-2-7所示,能使y1>y2成立的x取值范围是_______ 4.如图,已知二次函数图像的顶点坐标为C(1,0),直线与二次函数的图像交于A、B两点,其中A点的坐标为(3,4),B点在y轴上。 (1)求m的值及二次函数的解析式; (2)P为线段AB上的一个动点(点P与A,B不重合),过点P做x轴的垂线与二次函数图像交于点E,设线段PE的长度为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围; (3)D为直线AB与这个二次函数图像对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请说明理由。 5.如图l-2-46,已知两点A(-1,0),B(4,0)在x轴上,以AB为直径的半圆P交y轴于点C (1)求经过 A、B、C三点的抛物线的解析式; (2)设AC的垂直平分线交OC于D,连结AD并延长AD交半圆P于点E, 相等吗? (3)设点M为x轴负半轴上一点,OM=AE,是否存在过点M的直线,使该直线与(1)中所得的抛物线的两个交点到y轴的距离相等?若存在,求出这条直线对应函数的表达式;若不存在,请说明理由. 6.如图l-2-48,Rt△PMN中,∠P=90○ ,PM=PN,MN=8cm,矩形 ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上,令 Rt△PMN不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动(图l-2-49)直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y cm2 ,求y与x之间的函数关系式. 7.已知,在Rt△OAB中,∠OAB=900,∠BOA=300,AB=2。若以O为坐标原点,OA所在直线为轴,建立如图所示的平面直角坐标系,点B在第一象限内。将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处。 (1)求点C的坐标; (2)若抛物线(≠0)经过C、A两点,求此抛物线的解析式; (3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作轴的平行线,交抛物线于点M。问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由。 8.如图,在平面直角坐标系xoy中,等腰梯形OABC的下底边OA在x轴的正半轴上,BC∥OA,OC=AB.tan∠BA0=,点B的坐标为(7,4). (1)求点A、C的坐标; (2)求经过点0、B、C的抛物线的解析式; (3)在第一象限内(2)中的抛物线上是否存在一点P,使得经过点P且与等腰梯形一腰平行的直线将该梯形分成面积相等的两部分?若存在,请求出点P的横坐标;若不存在,请说明理由. 9.如图,抛物线与轴的一个交点A在点(-2,0)和(-1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则 (填“”或“”); 的取值范围是 10.如图,矩形OABC的两边OA、OC分别在x轴和y轴上,A(-3,0),过点C的直线y=-2x+4与x轴交于点D,二次函数y=-x 2+bx+c的图象经过B、C两点. (1)求B、C两点的坐标; (2)求二次函数的解析式; (3)若点P是CD的中点,求证:AP⊥CD; O C B A P D x y (4)在二次函数的图象上是否存在这样的点M,使以A、P、C、M为顶点的四边形为矩形?若存在,求出点M的坐标;若不存在,请说明理由. 11.已知,如图抛物线与y轴交于C点,与x轴交于A、B两点,A点在B点左侧。点B的坐标为(1,0),OC=30B. (1)求抛物线的解析式; (2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值: (3)若点E在x轴上,点P在抛物线上。是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由. 12.如图,已知二次函数的图象的顶点为.二次函数的图象与轴交于原点及另一点,它的顶点在函数的图象的对称轴上. (1)求点与点的坐标; x y O 1 2 3 2 1 A (2)当四边形为菱形时,求函数的关系式.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服