1、精诚凝聚 =_= 成就梦想 第十一章 机械振动和机械波知识网络:周期:机械振动简谐运动物理量:振幅、周期、频率运动规律简谐运动图象阻尼振动 无阻尼振动受力特点回复力:F= - kx弹簧振子:F= - kx单摆:受迫振动共振在介质中的传播机械波形成和传播特点类型横波 纵波描述方法波的图象波的公式: x=vt特性声波,超声波及其应用波的叠加 干涉 衍射多普勒效应实例11-1机械振动一、简谐运动的基本概念1定义物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。表达式为:F= -kx(1)简谐运动的位移必须是指偏离平衡位置的位移。也就是说,在研究简谐运动时所说
2、的位移的起点都必须在平衡位置处。(2)回复力是一种效果力。是振动物体在沿振动方向上所受的合力。(3)“平衡位置”不等于“平衡状态”。平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)(4)F=-kx是判断一个振动是不是简谐运动的充分必要条件。凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。2几个重要的物理量间的关系要熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x、回复力F、加速度a、速度v这四个矢量的相互关系
3、。(1)由定义知:Fx,方向相反。(2)由牛顿第二定律知:Fa,方向相同。(3)由以上两条可知:ax,方向相反。(4)v和x、F、a之间的关系最复杂:当v、a同向(即 v、 F同向,也就是v、x反向)时v一定增大;当v、a反向(即 v、 F反向,也就是v、x同向)时,v一定减小。3从总体上描述简谐运动的物理量振动的最大特点是往复性或者说是周期性。因此振动物体在空间的运动有一定的范围,用振幅A来描述;在时间上则用周期T来描述完成一次全振动所须的时间。(1)振幅A是描述振动强弱的物理量。(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的)(2)周期T是描述振动快慢
4、的物理量。(频率f=1/T 也是描述振动快慢的物理量)周期由振动系统本身的因素决定,叫固有周期。任何简谐运动都有共同的周期公式:(其中m是振动物体的质量,k是回复力系数,即简谐运动的判定式F= -kx中的比例系数,对于弹簧振子k就是弹簧的劲度,对其它简谐运动它就不再是弹簧的劲度了)。二、典型的简谐运动1弹簧振子(1)周期,与振幅无关,只由振子质量和弹簧的劲度决定。(2)可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是。这个结论可以直接使用。(3)在水平方向上振动的弹簧振子的回复力是弹簧的弹力;在竖直方向上振动的弹簧振子的回复力是弹簧弹力和重力的合力。例1 有一弹簧振子做简谐运动,则
5、 ( )A加速度最大时,速度最大 B速度最大时,位移最大C位移最大时,回复力最大 D回复力最大时,加速度最大解析:振子加速度最大时,处在最大位移处,此时振子的速度为零,由F= - kx知道,此时振子所受回复力最大,所以选项A错,C、D对振子速度最大时,是经过平衡位置时,此时位移为零,所以选项B错故正确选项为C、D点评:分析振动过程中各物理量如何变化时,一定要以位移为桥梁理清各物理量间的关系:位移增大时,回复力、加速度、势能均增大,速度、动量、动能均减小;位移减小时,回复力、加速度、势能均减小,速度、动量、动能均增大各矢量均在其值为零时改变方向,如速度、动量均在最大位移处改变方向,位移、回复力、
6、加速度均在平衡位置改变方向例2 如图所示,质量为m的小球放在劲度为k的轻弹簧上,使小球上下振动而又始终未脱离弹簧。(1)最大振幅A是多大?(2)在这个振幅下弹簧对小球的最大弹力Fm是多大?解析:该振动的回复力是弹簧弹力和重力的合力。在平衡位置弹力和重力等大反向,合力为零;在平衡位置以下,弹力大于重力,F- mg=ma,越往下弹力越大;在平衡位置以上,弹力小于重力,mg-F=ma,越往上弹力越小。平衡位置和振动的振幅大小无关。因此振幅越大,在最高点处小球所受的弹力越小。极端情况是在最高点处小球刚好未离开弹簧,弹力为零,合力就是重力。这时弹簧恰好为原长。(1)最大振幅应满足kA=mg, A=(2)
7、小球在最高点和最低点所受回复力大小相同,所以有:Fm-mg=mg,Fm=2mg例3弹簧振子以O点为平衡位置在B、C两点之间做简谐运动B、C相距20 cm某时刻振子处于B点经过0.5 s,振子首次到达C点求:(1)振动的周期和频率;(2)振子在5 s内通过的路程及位移大小;(3)振子在B点的加速度大小跟它距O点4 cm处P点的加速度大小的比值解析:(1)设振幅为A,由题意BC2A10 cm,所以A10 cm振子从B到C所用时间t05s为周期T的一半,所以T10s;f1/T10Hz(2)振子在1个周期内通过的路程为4A。故在t5s5T内通过的路程st/T4A200cm5 s内振子振动了5个周期,5
8、s末振子仍处在B点,所以它偏离平衡位置的位移大小为10cm(3)振子加速度ax,所以aB:aPxB:xp10:45:2例4.一弹簧振子做简谐运动周期为TA若t时刻和(t+t)时刻振子运动速度的大小相等、方向相反,则t一定等于T/2的整数倍B若t时刻和(t+t)时刻振子运动位移的大小相等、方向相同,则t一定等于T的整数倍C若tT2,则在t时刻和(tt)时刻弹簧的长度一定相等D若tT,则在t时刻和(tt)时刻振子运动的加速度一定相同解析:若tT2或tnTT/2,(n1,2,3),则在t 和(tt)两时刻振子必在关于干衡位置对称的两位置(包括平衡位置),这两时刻振子的位移、回复力、加速度、速度等均大
9、小相等,方向相反但在这两时刻弹簧的长度并不一定相等(只有当振子在t和(tt)两时刻均在平衡位置时,弹簧长度才相等)反过来若在t和(tt),两时刻振子的位移(回复力、加速度)和速度(动量)均大小相等方向相反,则t一定等于tT2的奇数倍即t(2n1)T/2(n1,2,3)如果仅仅是振子的速度在t 和(tt),两时刻大小相等方向相反,那么不能得出t(2n一1)T/2,更不能得出tnT/2(n1,2,3)根据以上分析A、C选项均错若t和(tt)时刻,振子的位移(回复力、加速度)、速度(动量)等均相同,则tnT(n1,2,3),但仅仅根据两时刻振子的位移相同,不能得出tnT所以B这项错若tT,在t和(t
10、t)两时刻,振子的位移、回复力、加速度、速度等均大 小相等方向相同,D选项正确。例4-1.一简谐振子沿x轴振动,平衡位置在坐标原点。 时刻振子的位移;时刻;时刻。该振子的振幅和周期可能为t1t2A0. 1 m, B0.1 m, 8s C0.2 m, D0.2 m,8s【答案】AD【解析】在t=s和t=4s两时刻振子的位移相同,第一种情况是此时间差是周期的整数倍,当n=1时s。在s的半个周期内振子的位移由负的最大变为正的最大,所以振幅是0.1m。A正确。第二种情况是此时间差不是周期的整数倍则,当n=0时s,且由于是的二倍说明振幅是该位移的二倍为0.2m。如图答案D。2单摆。(1)单摆振动的回复力
11、是重力的切向分力,不能说成是重力和拉力的合力。在平衡位置振子所受回复力是零,但合力是向心力,指向悬点,不为零。(2)当单摆的摆角很小时(小于10)时,单摆的周期,与摆球质量m、振幅A都无关。其中l为摆长,表示从悬点到摆球质心的距离,要区分摆长和摆线长。(3)小球在光滑圆弧上的往复滚动,和单摆完全等同。只要摆角足够小,这个振动就是简谐运动。这时周期公式中的l应该是圆弧半径R和小球半径r的差。(4)摆钟问题。单摆的一个重要应用就是利用单摆振动的等时性制成摆钟。在计算摆钟类的问题时,利用以下方法比较简单:在一定时间内,摆钟走过的格子数n与频率f成正比(n可以是分钟数,也可以是秒数、小时数),再由频率
12、公式可以得到:例5. 已知单摆摆长为L,悬点正下方3L/4处有一个钉子。让摆球做小角度摆动,其周期将是多大?解析:该摆在通过悬点的竖直线两边的运动都可以看作简谐运动,周期分别为和,因此该摆的周期为 :例6.固定圆弧轨道弧AB所含度数小于10,末端切线水平。两个相同的小球a、b分别从轨道的顶端和正中由静止开始下滑,比较它们到达轨道底端所用的时间和动能:tatb,Ea2Eb。解析:两小球的运动都可看作简谐运动的一部分,时间都等于四分之一周期,而周期与振幅无关,所以ta= tb;从图中可以看出b小球的下落高度小于a小球下落高度的一半,所以Ea2Eb。例7.将一个力电传感器接到计算机上,可以测量快速变
13、化的力。用这种方法测得的某单摆摆动过程中悬线上拉力大小随时间变化的曲线如右图所示。由此图线提供的信息做出下列判断:t02s时刻摆球正经过最低点;t11s时摆球正处于最高点;摆球摆动过程中机械能时而增大时而减小;摆球摆动的周期约是T06s。上述判断中正确的是 A B C D解析:注意这是悬线上的拉力图象,而不是振动图象。当摆球到达最高点时,悬线上的拉力最小;当摆球到达最低点时,悬线上的拉力最大。因此正确。从图象中看出摆球到达最低点时的拉力一次比一次小,说明速率一次比一次小,反映出振动过程摆球一定受到阻力作用,因此机械能应该一直减小。在一个周期内,摆球应该经过两次最高点,两次最低点,因此周期应该约
14、是T12s。因此答案错误。本题应选C。三、简谐运动的图象1简谐运动的图象:以横轴表示时间t,以纵轴表示位移x,建立坐标系,画出的简谐运动的位移时间图象都是正弦或余弦曲线2振动图象的含义:振动图象表示了振动物体的位移随时间变化的规律3图象的用途:从图象中可以知道:(1)任一个时刻质点的位移 (2)振幅A (3)周期T(4)速度方向:由图线随时间的延伸就可以直接看出(5)加速度:加速度与位移的大小成正比,而方向总与位移方向相反只要从振动图象中认清位移(大小和方向)随时间变化的规律,加速度随时间变化的情况就迎刃而解了点评:关于振动图象的讨论(1)简谐运动的图象不是振动质点的轨迹做简谐运动质点的轨迹是
15、质点往复运动的那一段线段(如弹簧振子)或那一段圆弧(如下一节的单摆)这种往复运动的位移图象。就是以x轴上纵坐标的数值表示质点对平衡位置的位移。以t轴横坐标数值表示各个时刻,这样在xt坐标系内,可以找到各个时刻对应质点位移坐标的点,即位移随时间分布的情况振动图象(2)简谐运动的周期性,体现在振动图象上是曲线的重复性 简谐运动是一种复杂的非匀变速运动但运动的特点具有简单的周期性、重复性、对称性所以用图象研究要比用方程要直观、简便简谐运动的图象随时间的增加将逐渐延伸,过去时刻的图形将永远不变,任一时刻图线上过该点切线的斜率数值代表该时刻振子的速度大小。正负表示速度的方向,正时沿x正向,负时沿x负向例
16、8.劲度系数为20Ncm的弹簧振子,它的振动图象如图所示,在图中A点对应的时刻A振子所受的弹力大小为05N,方向指向x轴的负方向B振子的速度方向指向x轴的正方向C 在04s内振子作了175次全振动D在04s内振子通过的路程为035cm,位移为0B解析:由图可知A在t轴上方,位移x025cm,所以弹力Fkx5N,即弹力大小为5N,方向指向x轴负方向,选项A不正确;由图可知过A点作图线的切线,该切线与x轴的正方向的夹角小于90,切线斜率为正值,即振子的速度方向指向x轴的正方向,选项B正确 由图可看出,t0、t4s时刻振子的位移都是最大,且都在t轴的上方,在04s内完成两次全振动,选项C错误由于t0
17、时刻和t4s时刻振子都在最大位移处,所以在04s内振子的位移为零,又由于振幅为05cm,在04s内振子完成了2次全振动,所以在这段时间内振子通过的路程为24050cm4cm,故选项D错误综上所述,该题的正确选项为B例9.摆长为L的单摆做简谐振动,若从某时刻开始计时,(取作t=0),当振动至 时,摆球具有负向最大速度,则单摆的振动图象是图中的( )C解析:从t=0时经过时间,这段时间为,经过 摆球具有负向最大速度,说明摆球在平衡位置,在给出的四个图象中,经过具有最大速度的有B、C两图,而具有负向最大速度的只有C。所以选项C正确。例10.(2004物理江苏卷)图甲中,波源S从平衡位置y=0开始振动
18、,运动方向竖直向上(y轴的正方向),振动周期T=0.01s,产生的简谐波向左、右两个方向传播,波速均为v=80m/s经过一段时间后,P、Q两点开始振动,已知距离SP=1.2m、SQ=2.6m若以Q点开始振动的时刻作为计时的零点,则在图乙的振动图象中,能正确描述P、Q两点振动情况的是( )图甲PQSvvA. 甲为Q点振动图象B. 乙为Q点振动图象 C. 丙为P点振动图象D. 丁为P点振动图象甲丁2TTyt2TTyt乙丙2T2TTTytytoooo图乙解析:振动周期T=0.01s,波速为v=80m/s,v =,则=0.8m,SP=1.2m、则S、P之间相差 SQ=2.6m,S、Q之间相差3,P和P
19、关于S点对称的点的振动情况完全一致,则和Q相差,由于波源开始时是向上振动的,所以Q开始也是向上振动的!A对!P比Q超前,D对。答案:AD四、受迫振动与共振1受迫振动物体在驱动力(既周期性外力)作用下的振动叫受迫振动。物体做受迫振动的频率等于驱动力的频率,与物体的固有频率无关。物体做受迫振动的振幅由驱动力频率和物体的固有频率共同决定:两者越接近,受迫振动的振幅越大,两者相差越大受迫振动的振幅越小。2共振当驱动力的频率跟物体的固有频率相等时,受迫振动的振幅最大,这种现象叫共振。要求会用共振解释现象,知道什么情况下要利用共振,什么情况下要防止共振。(1)利用共振的有:共振筛、转速计、微波炉、打夯机、
20、跳板跳水、打秋千(2)防止共振的有:机床底座、航海、军队过桥、高层建筑、火车车厢例11 把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它每转一周,给筛子一个驱动力,这就做成了一个共振筛。不开电动机让这个筛子自由振动时,完成20次全振动用15s;在某电压下,电动偏心轮的转速是88r/min。已知增大电动偏心轮的电压可以使其转速提高,而增加筛子的总质量可以增大筛子的固有周期。为使共振筛的振幅增大,以下做法正确的是A降低输入电压 B提高输入电压C增加筛子质量 D减小筛子质量解析:筛子的固有频率为f固=4/3Hz,而当时的驱动力频率为f驱=88/60Hz,即f固 f驱。为了达到振幅增大,应该减小
21、这两个频率差,所以应该增大固有频率或减小驱动力频率。本题应选AD。例12一物体做受迫振动,驱动力的频率小于该物体的固有频率。当驱动力的频率逐渐增大时,该物体的振幅将:( )A逐渐增大B先逐渐减小后逐渐增大;C逐渐减小D先逐渐增大后逐渐减小D解析:此题可以由受迫振动的共振曲线图来判断。受迫振动中物体振幅的大小和驱动力频率与系统固有频率之差有关。驱动力的频率越接近系统的固有频率,驱动力与固有频率的差值越小,作受迫振动的振子的振幅就越大。当外加驱动力频率等于系统固有频率时,振动物体发生共振,振幅最大。 由共振曲线可以看出,当驱动力的频率小于该物体的固有频率时,增大驱动力频率,振幅增大,直到驱动力频率
22、等于系统固有频率时,振动物体发生共振,振幅最大。在此之后若再增大驱动力频率,则振动物体的振幅减小。所以本题的正确答案为D。例13如图所示,在一根张紧的水平绳上,悬挂有 a、b、c、d、e五个单摆,让a摆略偏离平衡位置后无初速释放,在垂直纸面的平面内振动;接着其余各摆也开始振动。下列说法中正确的有:( )A各摆的振动周期与a摆相同B各摆的振幅大小不同,c摆的振幅最大C各摆的振动周期不同,c摆的周期最长D各摆均做自由振动AB解析:a摆做的是自由振动,周期就等于a摆的固有周期,其余各摆均做受迫振动,所以振动周期均与a摆相同。 c摆与a摆的摆长相同,所以c摆所受驱动力的频率与其固有频率相等,这样c摆产
23、生共振,故c摆的振幅最大。此题正确答案为A、B。11-2机械波 1机械波的产生条件:波源(机械振动)传播振动的介质(相邻质点间存在相互作用力)。2机械波的分类机械波可分为横波和纵波两种。(1)质点振动方向和波的传播方向垂直的叫横波,如:绳上波、水面波等。(2)质点振动方向和波的传播方向平行的叫纵波,如:弹簧上的疏密波、声波等。分类质点的振动方向和波的传播方向关系形状举例横波垂直凹凸相间;有波峰、波谷绳波等纵波在同一条直线上疏密相间;有密部、疏部弹簧波、声波等说明:地震波既有横波,也有纵波。3机械波的传播(1)在同一种均匀介质中机械波的传播是匀速的。波速、波长和频率之间满足公式:v=f。(2)介
24、质质点的运动是在各自的平衡位置附近的简谐运动,是变加速运动,介质质点并不随波迁移。(3)机械波转播的是振动形式、能量和信息。(4)机械波的频率由波源决定,而传播速度由介质决定。4机械波的传播特点(规律):(1)前带后,后跟前,运动状态向后传。即:各质点都做受迫振动,起振方向由波源来决定;且其振动频率(周期)都等于波源的振动频率(周期),但离波源越远的质点振动越滞后。(2)机械波传播的是波源的振动形式和波源提供的能量,而不是质点。5.波动图像波的图象表示介质中的各个质点在同一时刻的位移。(1)振动图象和波的图象振动图象和波的图象从图形上看好象没有什么区别,但实际上它们有本质的区别。a.物理意义不
25、同:振动图象表示同一质点在不同时刻的位移;波的图象表示介质中的各个质点在同一时刻的位移。 b.图象的横坐标的单位不同:振动图象的横坐标表示时间;波的图象的横坐标表示距离。c.从振动图象上可以读出振幅和周期;从波的图象上可以读出振幅和波长。简谐振动图象与简谐横波图象的列表比较:简谐振动简谐横波图象坐标横坐标时间介质中各质点的平衡位置纵坐标质点的振动位移各质点在同一时刻的振动位移研究对象一个质点介质中的大量质点物理意义一个质点在不同时刻的振动位移介质中各质点在同一时刻的振动位移随时间的变化原有图形不变,图线随时间而延伸原有波形沿波的传播方向平移运动情况质点做简谐运动波在介质中匀速传播;介质中各质点
26、做简谐振动(2)描述波的物理量波速、周期、波长:a.波速v:运动状态或波形在介质中传播的速率;同一种波的波速由介质决定。注:在横波中,某一波峰(波谷)在单位时间内传播的距离等于波速。b.周期T:即质点的振动周期;由波源决定。c.波长:在波动中,振动位移总是相同的两个相邻质点间的距离。注:在横波中,两个相邻波峰(波谷)之间的距离为一个波长。结论:1)波在一个周期内传播的距离恰好为波长。由此:v=/T=f;=vT. 波长由波源和介质决定。2)质点振动nT(波传播n)时,波形不变。3)相隔波长整数倍的两质点,振动状态总相同;相隔半波长奇数倍的两质点,振动状态总相反。(3)波的图象的画法波的图象中,波
27、的图形、波的传播方向、某一介质质点的瞬时速度方向,这三者中已知任意两者,可以判定另一个。(口诀为“上坡下,下坡上” ;或者“右上右、左上左) 6机械波的反射、折射、干涉、衍射一切波都能发生反射、折射、干涉、衍射。特别是干涉、衍射,是波特有的性质。(1)干涉 产生干涉的必要条件是:两列波源的频率必须相同。需要说明的是:以上是发生干涉的必要条件,而不是充分条件。要发生干涉还要求两列波的振动方向相同(要上下振动就都是上下振动,要左右振动就都是左右振动),还要求相差恒定。我们经常列举的干涉都是相差为零的,也就是同向的。如果两个波源是振动是反向的,那么在干涉区域内振动加强和减弱的位置就正好颠倒过来了。干
28、涉区域内某点是振动最强点还是振动最弱点的充要条件:最强:该点到两个波源的路程之差是波长的整数倍,即=n最弱:该点到两个波源的路程之差是半波长的奇数倍,即根据以上分析,在稳定的干涉区域内,振动加强点始终加强;振动减弱点始终减弱。至于“波峰和波峰叠加得到振动加强点”,“波谷和波谷叠加也得到振动加强点”,“波峰和波谷叠加得到振动减弱点”这些都只是充分条件,不是必要条件。例14. 如图所示,S1、S2是两个相干波源,它们振动同步且振幅相同。实线和虚线分别表示在某一时刻它们所发出的波的波峰和波谷。关于图中所标的a、b、c、d四点,下列说法中正确的有A该时刻a质点振动最弱,b、c质点振动最强,d质点振动既
29、不是最强也不是最弱 B该时刻a质点振动最弱,b、c、d质点振动都最强Ca质点的振动始终是最弱的, b、c、d质点的振动始终是最强的D再过T/4后的时刻a、b、c三个质点都将处于各自的平衡位置,因此振动最弱解析:该时刻a质点振动最弱,b、c质点振动最强,这不难理解。但是d既不是波峰和波峰叠加,又不是波谷和波谷叠加,如何判定其振动强弱?这就要用到充要条件:“到两波源的路程之差是波长的整数倍”时振动最强,从图中可以看出,d是S1、S2连线的中垂线上的一点,到S1、S2的距离相等,所以必然为振动最强点。本题答案应选B、C点评:描述振动强弱的物理量是振幅,而振幅不是位移。每个质点在振动过程中的位移是在不
30、断改变的,但振幅是保持不变的,所以振动最强的点无论处于波峰还是波谷,振动始终是最强的。例15.如图所示表示两列相干水波的叠加情况,图中的实线表示波峰,虚线表示波谷。设两列波的振幅均为5 cm,且图示的范围内振幅不变,波速和波长分别为1m/s和0.5m。C点是BE连线的中点,下列说法中正确的是 ( )AC、E两点都保持静止不动B图示时刻A、B两点的竖直高度差为20cmC图示时刻C点正处于平衡位置且向水面上运动D从图示的时刻起经0.25s,B点通过的路程为20cmBCD解析:由波的干涉知识可知图6中的质点A、B、E的连线处波峰和波峰或波谷和波谷叠加是加强区,过D、F的连线处和过P、Q的连线处波峰和
31、波谷叠加是减弱区。C、E两点是振动的加强点,不可能静止不动。所以选项A是错误的。在图示时刻,A在波峰,B在波谷,它们振动是加强的,振幅均为两列波的振幅之和,均为10cm,此时的高度差为20cm,所以B选项正确。A、B、C、E均在振动加强区,且在同一条直线上,由题图可知波是由E处向A处传播,在图示时刻的波形图线如右图所示,由图可知C点向水面运动,所以C选项正确。 波的周期T=/v = 0.5s,经过0.25s,即经过半个周期。在半个周期内,质点的路程为振幅的2倍,所以振动加强点B的路程为20cm,所以D选项正确。点评: 关于波的干涉,要正确理解稳定的干涉图样是表示加强区和减弱区的相对稳定,但加强
32、区和减弱区还是在做振动,加强区里两列波分别引起质点分振动的方向是相同的,减弱区里两列波分别引起质点分振动的方向是相反的,发生变化的是振幅增大和减少的区别,而且波形图沿着波的传播方向在前进。例17(2012上海第10题).两波源在水槽中形成的波形如图所示,其中实线表示波峰,虚线表示波谷,则 (A)在两波相遇的区域中会产生干涉 (B)在两波相遇的区域中不会产生干涉 (C) 点的振动始终加强 (D) 点的振动始终减弱答案:B 因为波长不同说明频率不同,所以不会发生干涉(2)衍射。波绕过障碍物的现象叫做波的衍射。能够发生明显的衍射现象的条件是:障碍物或孔的尺寸比波长小,或者跟波长相差不多。(3)波的独
33、立传播原理和叠加原理。独立传播原理:几列波相遇时,能够保持各自的运动状态继续传播,不互相影响。叠加原理:介质质点的位移、速度、加速度都等于几列波单独转播时引起的位移、速度、加速度的矢量和。波的独立传播原理和叠加原理并不矛盾。前者是描述波的性质:同时在同一介质中传播的几列波都是独立的。比如一个乐队中各种乐器发出的声波可以在空气中同时向外传播,我们仍然能分清其中各种乐器发出的不同声波。后者是描述介质质点的运动情况:每个介质质点的运动是各列波在该点引起的运动的矢量和。这好比老师给学生留作业:各个老师要留的作业与其他老师无关,是独立的;但每个学生要做的作业却是所有老师留的作业的总和。*如图中实线和虚线
34、所示,振幅、周期、起振方向都相同的两列正弦波(都只有一个完整波形)沿同一条直线向相反方向传播,在相遇阶段(一个周期内),试画出每隔T/4后的波形图。并分析相遇后T/2时刻叠加区域内各质点的运动情况。解析:根据波的独立传播原理和叠加原理可作出每隔T/4后的波形图如所示。相遇后T/2时刻叠加区域内abcde各质点的位移都是零,但速度各不相同,其中a、c、e三质点速度最大,方向如图所示,而b、d两质点速度为零。这说明在叠加区域内,a、c、e三质点的振动是最强的,b、d两质点振动是最弱的。例17-1.波源S1和S2振动方向相同,频率均为4Hz,分别置于均匀介质中轴上的两点处,如图所示.两波源产生的简谐
35、横波沿轴相向传播,波速为.己知两波源振动的初始相位相同.求:(i)简谐波的波长;(ii)OA间合振动振幅最小的点的位置。解析:(i)设波长为,频率为,则,代入已知数据,得。(ii)以O为坐标原点,设P为OA间的任意一点,其坐标为x,则两波源到P点的波长差为,。期中、以m为单位。合振动振幅最小的点的位置满足,k为整数解得:x=0.25m,0.75m,1.25m,1.75m。7多普勒效应当波源或者接受者相对于介质运动时,接受者会发现波的频率发生了变化,这种现象叫多普勒效应。学习“多普勒效应”必须弄清的几个问题:(1)当波源以速率v匀速靠近静止的观察者A时,观察者“感觉”到的频率变大了。但不是“越来
36、越大”。BAS(2)当波源静止,观察者以速率v匀速靠近波源时,观察者“感觉”到的频率也变大了。(3)当波源与观察者相向运动时,观察者“感觉”到的频率变大。 (4)当波源与观察者背向运动时,观察者“感觉”到的频率变小。例18.a为声源,发出声波;b为接收者,接收a发出的声波。a、b若运动,只限于在沿两者连线方向上,下列说法正确的是Aa静止,b向a运动,则b收到的声频比a发出的高Ba、b向同一方向运动,则b收到的声频一定比a发出的高Ca、b向同一方向运动,则b收到的声频一定比a发出的低Da、b都向相互背离的方向运动,则b收到的声频比a发出的高答案:A11-3机械振动和机械波振源在其平衡位置附近的振
37、动,通过介质将振动形式及能量由近及远传播就形成了波。相距波源一个波长的质点的振动要比波源滞后一个振动周期。相距半个波长的两质点的振动步调是相反的。 振动图象描述的是某一振动质点在平衡位置附近振动的位移随时间的变化规律。由图象可知:振幅A、周期T。波动图象描述的是大量质点在波传播的过程中,各质点在某一时刻的振动位移。由图象可知:振幅A、波长。通过波动图象中某一质点的振动方向,可根据沿波的传播方向质点“上坡下,下坡上”来判定波的传播方向。传播中空间和时间有对应图象中两振动状态相同的质点间的距离等于一个波长。振动时间差为一个周期T。振动的最大位移为振幅A。波的传播和介质中各质点的振动之间存在着密切的
38、内在联系,再加上波的周期性和重复性,在求解这类问题时,常常由于质点的振动方向或波的传播方向的不确定、波的传播时间的不确定、波的传播的距离的不确定等,出现多解现象。波的传播是匀速的,同一种介质中,波速相同。在一个周期内,波形匀速向前推进一个波长。n个周期波形向前推进n个波长(n可以是任意正数)。因此在计算中既可以使用v=f,也可以使用v=s/t,后者往往更方便。1波的传播方向上,介质质点的运动是受迫振动,是简谐运动任何一个介质质点在一个周期内经过的路程都是4A,在半个周期内经过的路程都是2A,但在四分之一个周期内经过的路程就不一定是A了。例19(2011上海第24题)两列简谐波沿x轴相向而行,波
39、速均,两波源分别位于A、B处,时的波形如图所示。当时,M点的位移为 cm,N点的位移为 cm。 答案:2,02起振方向介质中每个质点开始振动的方向都和振源开始振动的方向相同。也和波头质点的振动方向相同。S例20. 在均匀介质中有一个振源S,它以50HZ的频率上下振动,该振动以40m/s的速度沿弹性绳向左、右两边传播。开始时刻S的速度方向向下,试画出在t=0.03s时刻的波形。v v解析:从开始计时到t=0.03s经历了1.5个周期,波分别向左、右传播1.5个波长,该时刻波源S的速度方向向上,所以波形如右图所示。50-5 y/m2 4 x/mP例21.如图所示是一列简谐横波在t=0时刻的波形图,
40、已知这列波沿x轴正方向传播,波速为20m/s。P是离原点为2m的一个介质质点,则在t=0.17s时刻,质点P的:速度和加速度都沿-y方向;速度沿+y方向,加速度沿-y方向;速度和加速度都正在增大;速度正在增大,加速度正在减小。以上四种判断中正确的是A只有 B只有C只有 D只有解析:由已知,该波的波长=4m,波速v=20m/s,因此周期为T=/v=0.2s;因为波向右传播,所以t=0时刻P质点振动方向向下;0.75 T 0.17s T,所以P质点在其平衡位置上方,正在向平衡位置运动,位移为正,正在减小;速度为负,正在增大;加速度为负,正在减小。正确,选C例22(2011全国卷1第21题)一列简谐
41、横波沿x轴传播,波长为1.2m,振幅为A。当坐标为x=0处质元的位移为且向y轴负方向运动时坐标为x=0.4m处质元的位移为。当坐标为x=0.2m处的质元位于平衡位置且向y轴正方向运动时,x=0.4m处质元的位移和运动方向分别为A、沿y轴正方向 B ,沿y轴负方向C、沿y轴正方向 D、沿y轴负方向解析:选C3波动图象的应用:从图象上直接读出的信息:振幅、波长、任一质点在该时刻的振动位移。例24(2012海南卷). (4分)一列简谐横波在t=0时的波形图如图所示。介质中x=2m处的质点P沿y轴方向做简谐运动的表达式为y=10sin(5t)cm。关于这列简谐波,下列说法正确的是_(填入正确选项前的字
42、母。选对1个给2分,选对2个给4分;选错1个扣2分,最低得0分)。A.周期为4.0s B.振幅为20cmC.传播方向沿x轴正向 D.传播速度为10m/s答案:CD解析: 周期为:,由波的图像得:振幅、波长,故波速为,p点在t=0时振动方向为正y方向,波向正x方向传播 4.波动方向振动方向的关系方法:(1)口诀法-沿波的传播方向,质点振动方向为:“上坡下,下坡上”(2)封闭三角形法-沿X轴上的波速方向顺着波峰(或波谷)的走势画出封闭的矢量三角形,确定质点的振动方向,如图甲(3)选择对应的半周,再由波动方向与振动方向“头头相对、尾尾相对”来判断。如图乙例25.如图示为一简谐横波在t=0时刻的波形图
43、。已知该时刻P点的振动方向向上,波速为V=4m/s。则以下判断正确的是:A、 该机械波的振幅为20 cm周期为0.5S。B、 该机械波沿X轴负方向传播。C、 Q点第一次到达波峰所需的时间为1.125SD、 介质中各质点的起振方向均沿Y轴正方向。图1解析:振幅为10cm,A错。由“上坡下,下坡上”判定波应向X轴正向传播,B错。该波的周期T=/V0.5S,Q点距t=0的波峰50.54.5m,t=4.5/4=1.125s。C正确。由t=0的波形可知,O点的起振方向是向下的,即沿Y轴的负方向,各质点的起振方向均和振源的起振方向相同,D错。例26.如图是一列波在t1=0时刻的波形,波的传播速度为2m/s
44、,若传播方向沿x轴负向,则从t1=0到t2=2.5s的时间内,质点M通过的路程为_,位移为_。 解析:由图:波长=0.4m,又波速v=2m/s,可得:周期T=0.2s,所以质点M振动了12.5T。对于简谐振动,质点振动1T,通过的路程总是4A;振动0.5T,通过的路程总是2A。所以,质点M通过的路程124A+2A=250cm=2.5m。质点M振动12.5T时仍在平衡位置。所以位移为0。例27.在波的传播方向上,距离一定的P与Q点之间只有一个波谷的四种情况,如图A、B、C、D所示。已知这四列波在同一种介质中均向右传播,则质点P能首先达到波谷的是( )B解析:四列波在同一种介质中传播,则波速v应相同。由T=/v得:TDTA=TBTC;波谷移动的速度相同,B图中的波谷距P点最近,最先到达。例28.(重庆第17题).介质中坐标原点0处的波源在t=0时刻开始振动,产生的简谐波沿x轴正向传播,t0时刻传到L处,波形如题17图所示。下列能描述x0处质点振动的图象是答案:C5.两个时刻的波形问题:设质点的振动时间(波的传播时间)为t,波传播的距离为x。则:t=nT+t即有x=n+x (