收藏 分销(赏)

河南省豫南九校2020-2021学年高二数学上学期第四次联考试题-理.doc

上传人:a199****6536 文档编号:2256009 上传时间:2024-05-24 格式:DOC 页数:14 大小:1.93MB 下载积分:8 金币
下载 相关 举报
河南省豫南九校2020-2021学年高二数学上学期第四次联考试题-理.doc_第1页
第1页 / 共14页
河南省豫南九校2020-2021学年高二数学上学期第四次联考试题-理.doc_第2页
第2页 / 共14页


点击查看更多>>
资源描述
河南省豫南九校2020-2021学年高二数学上学期第四次联考试题 理 河南省豫南九校2020-2021学年高二数学上学期第四次联考试题 理 年级: 姓名: - 14 - 河南省豫南九校2020-2021学年高二数学上学期第四次联考试题 理 (考试时间:120分钟 试卷满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。) 1.k>3是方程,表示双曲线的 A.充分不必要条件 B.充要条件 C.必要不充分条件 D.既不充分也不必要条件 2.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界所接受,不等号的引入对不等式的发展影响深远。若a>b>0,则下列结论错误的是 A. B.log2(a-b)>0 C. D.3a>3b 3.抛物线y2=2px(p>0)的焦点到双曲线x2-y2=1的渐近线的距离为,则p= A.4 B.3 C.2 D.1 4.已知a=(-2,1,3),b=(-1,2,1),若a⊥(a-λb),则实数λ的值为 A.2 B. C. D.-2 5.在等比数列{an}中,a3a11=4a7,若数列{bn}是等差数列,且b7=a7,则b5+b9= A.2 B.4 C.8 D.16 6.若实数x,y满足约束条件,则的取值范围是 A.(-∞,]∪[,+∞) B.[,] C.[-,] D.(-∞,]∪[,+∞) 7.如图,要测量底部不能到达的某铁塔AB的高度,在塔的同一侧选择C,D两观测点,且在C,D两点测得塔顶的仰角分别为45°,30°。在水平面上测得∠BCD=120°,C,D两地相距600m,则铁塔AB的高度是 A.120m B.480m C.240m D.600m 8.直三棱柱ABC-A1B1C1底面是等腰直角三角形,AB⊥AC,BC=BB1,则直线AB1与BC1所成角的余弦值为 A. B. C. D. 9.已知椭圆C:的左、右焦点分别为F1,F2,P是C上一点,且PF2⊥x轴,直线PF1与椭圆C的另一个交点为Q,若|PF1|=4|F1Q|,则椭圆C的离心率为 A. B. C. D. 10.已知正项等比数列{an}中,a9=9a7,若存在两项am,an,使得aman=27a12,则的最小值为 A.5 B. C. D. 11.在△ABC中,内角A,B,C的对边分别为a,b,c,若,(a2-3b2)cosC=,则角C= A. B. C.或 D.或 12.已知椭圆与双曲线共焦点F1,F2,它们的一个交点为P,且∠F1PF2=。若椭圆的离心率为,则双曲线的离心率为 A. B. C. D.2 二、填空题(本大题共4小题,每小题5分,共20分) 13.已知数列{an}满足an=(n≥2,n∈N*),若a4=,则a1= 。 14.△ABC的内角A,B,C的对边分别为a,b,c,若sinA=2sinC,且三条边a,b,c成等比数列,则cosA的值为 。 15.已知点P为棱长等于2的正方体ABCD-A1B1C1D1内部一动点,且||=2,则当的值最小时,与的夹角大小为 。 16.椭圆上存在第一象限的点M(x0,y0),使得过点M且与椭圆在此点的切线=1垂直的直线经过点(,0)(c为椭圆半焦距),则椭圆离心率的取值范围是 。 三、解答题(本大题共6小题,共计70分。解答时应写出文字说明、证明过程或演算步骤。) 17.(本小题满分10分) 已知p:∀x∈R,ax2-x+3>0;q:∃x0∈[1,2],a·≥1。 (1)若p为真命题,求a的取值范围; (2)若p∨q为真命题,且p∧q为假命题,求a的取值范围。 18.(本小题满分12分) 在△ABC中,角A,B,C的对边分别为a,b,c,且(2c-b)cosA-acosB=0。 (1)求角A的大小; (2)若b=3,△ABC的面积S△ABC=3,求a的值。 19.(本小题满分12分) 佩戴口罩能起到一定预防新冠肺炎的作用,某科技企业为了满足口罩的需求,决定开发生产口罩的新机器。生产这种机器的月固定成本为400万元,每生产x台,另需投入成本p(x)(万元),当月产量不足70台时,p(x)=x2+40x(万元);当月产量不小于70台时,p(x)=101x+-2060(万元)。若每台机器售价100万元,且该机器能全部卖完。 (1)求月利润y(万元)关于月产量x(台)的函数关系式; (2)月产量为多少台时,该企业能获得最大月利润?并求出其利润。 20.(本小题满分12分) 已知数列{an}的前n项和为Sn,a2=8,且满足Sn=+2(n∈N*)。 (1)求证数列是等比数列,并求数列{an}的通项公式; (2)设bn=,求数列{bn}的前n项和Tn。 21.(本小题满分12分) 如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB,点M是SD的中点,AN⊥SC,且交SC于点N。 (1)求证:SC⊥平面AMN; (2)求二面角D-AC-M的余弦值。 22.(本小题满分12分) 如图,在平面直角坐标系xOy中,已知椭圆M:的离心率为,且右焦点F(c,0)(c>0)到直线l:x=的距离为3。 (1)求椭圆M的方程; (2)过点F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,当∠PAC取得最小值时,求直线AB的方程。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服