1、水泥熟料回转窑设计说明书 作者: 日期:2 个人收集整理 勿做商业用途综合实践2 班级:无机062 学号:2006015006姓名:磨光阳 日期:2009-9-25水泥熟料煅烧制备生产工艺摘 要:本设计的题目是日产5 000吨水泥熟料回转窑初步设计,为满足现代水泥生产线的工艺需求,在生产规模上采用预分解窑生产技术,能够充分利用燃料的热效率、节省原料、降低生产成本,实现水泥生产现代化。本设计主要包括预热器、分解炉、冷却机系统物料平衡、烧成系统的热平衡计算,主要设备的选型、以及烧成系统的工艺流程和车间工艺布置的设计.关键词:初步设计;预分解窑;工艺流程绪 论当前世界水泥工业的发展是以节能、降耗、环
2、保为中心,走可持续发展的道路。与此相适应,水泥设备尤其是回转窑的资源化利用及应用中的环境行为等方面也成为研究的热点。一. 国内外发展现状我国自从1975年研究2 000t/d新型干法烧成系统以来,水泥生产工艺得到了长足发展,现在2 000t/d生产设备已全部国产化,日产4 000吨、5 000吨新型干法水泥生产技术装备国产化率达到95%以上,日产8 000吨水泥熟料生产线和日产10 000吨水泥熟料生产线装备只需少量关键件进口.随着“八五”期间“日产4 000 吨水泥装备国产化一条龙”和“九五”期间的技术完善和创新,技术装备水平进一步提高。“十五”期间,国家又组织实施了日产8 000吨和日产1
3、0 000吨水泥装备国产化项目,彻底改变我国大型水泥技术和装备基本依赖进口的局面。先进的工艺技术和大型国化装备为我国新型干法水泥加快发和水泥结构调整提供了技术保证,同时也为我国大型水泥技术装备出口定了基础.国产设备使得水泥项目资大大降低。在国外,新型干法窑向大型化发展,自动化水平不断提高,单机最大能力已达12 000t/d,吨水泥能耗已降低到90KWh/t以下,熟料热耗低于2 827KJ/kg,劳动生产率(水泥)提高到15 00020 000吨/(人年)。并且在环境保护方面也做到标准苛刻,在燃料使用方面,在瑞典和美国少数国家里,烧废料比例已达到80%。二。设计原则1坚持理论联系实际,从实际生产
4、出发,事实求是。2设计方案的确定,在技术上做到先进可靠,较大辐度地提高产量、降低能耗.3工艺布置合理,生产工艺流程顺畅.4本着合理选择工艺过程和厂房位置,尽量选用适合生产要求和低损耗,低污染的设备,注意劳动保护,安全生产,提高劳动生产率. 5环保设施完善、产品优质节能、成本预算合理。三。新型干法回转窑的优化本设计采用目前国内先进的新型干法生产技术,此项技术开发了系统压损在4 000-4 800Pa的高效、低压损的五级旋风预热系统,五旋风预热可以将50的生料粉加热到800,而且可将窑尾废气从1 100降低到330。1选用的分解炉方面NSF分解炉有以下特点:(1)NSF炉高度增加,从而增加了容积,
5、增加了物料在炉内的停留时间。并且NSF炉燃料直接喷入三次风中,能够完全燃烧,这样也降低了对燃料固定碳值的要求。(2)由于喂料一部分在出窑的空气上升烟道中,这样降低了尾气的温度,使废气中碱、硫、氯元素凝聚在生料颗粒上再回窑内,减少了在烟道内的结皮。2NSF的不足:炉的出口是侧面出口,且出口高度大,占分解炉高度1/3左右,容易使炉内产生偏流、短路和形成稀薄生料区.3选用的IKN悬摆式冷却机特点:(1)采用COANDA喷流篦板的水平喷流.(2)运用空气梁技术的熟料入口分配系统.(3)单缸液压传动的自调悬摆系统.(4)液压传动的隔热挡板。(5)箱式辊式破碎机和气力清除漏料装置。四。工艺平衡计算1。烧成
6、系统热平衡计算平衡计算主要包括支出与收入物料,支出与收入热量的平衡.1)。原始资料 回转窑热工的目的是确定燃料消耗量,分析煅烧系统内热量收支情况,确定窑的热效率以及寻求降低热耗的途经。平衡范围:从冷却机熟料出口到预热器废气出口。即包括回转窑、冷却机、分解炉和预热器系统。 温度基准:0 物料基准:1熟料2). 物料平衡 (1)窑型:4.872带NSF型预分解窑。 (2)物料化学成分(%)见表31。(3)熟料矿物组成见表3-2。(4)煤粉组成及发热量见表33。(5)熟料出冷却机温度 tLsh=200。(6)入窑煤粉温度 tr=40。(7)一次空气入窑温度 tylk=36。(8)入冷却机冷空气温度
7、tk=36。(9)窑头漏风温度 tyLOK=36。(10)入冷却机冷空气量 Vlk=2。14Nm3/kg熟料。(11)入窑风量比(%) 一次空气:二次空气:漏风=29:64:7。表31物料化学成分(wt%)项目烧失量SiO2Al2O3Fe2O3CaOMgOSO3其它总和干生料Ls-35.5813。673.552。5942.51.56-0。55100熟料Lsh20.605。855。0063.912.102.54100飞灰Lfh-33。4014。594。092.0741。851。872。13100煤灰LA40。5016。7210.8515.975.425.515.03100表32物料化学成分(wt
8、)-C3SC2SC3AC4AF57。0916.087。0515.20表33煤粉组成及发热量元素分析()工业分析()焦渣特性(号)发热量CfHfSfNfOfVfF。CfAfWfKJ/煤粉66.484。080。351。1711.8430。4053.5211.284.80425 376(12)燃料比(%)回转窑:分解炉=47:53。(13)出预热器废气温度 tf=370。(14)出预热器飞灰量 mfh=0.141/熟料。(15)电收尘器及增湿塔综合收尘效率 =99。28。(16)回收飞灰入窑温度 tyh=50。(17)气力提升泵料风比 14。4kg/Nm3。(18)喂料带入空气温度 ts=50。(1
9、9)窑尾过剩空气系数 y=1.05.(20)分解炉漏风占分解炉燃料燃烧用理论空气用量的5。(21)分解炉出口过剩空气系数 f=1.25。(22)每级旋风筒漏入空气量为理论空气的5.(23)系统散热损失 QB=540KJ/kg熟料。(24)熟料中燃料灰分掺入百分比a=100。(25)生料中的水份含量ws=0。(26)冷却机烟囱排出空气温度 tpk=220。(27)冷却水带出热量 QLS=170KJ/kg熟料。2物料平衡计算1)收入物料:(1)燃料消耗量:mrmyr+mFr/熟料 (2-1)(2)生料消耗量:干生料理论消耗量:/熟料 (22) 出预热器飞灰量:mfh0。141/熟料 (2-3)烟囱
10、飞损飞灰量:mFhmfh(1)0.001/熟料 (24)入窑回灰量:myhmfhmFh0。140/熟料 (25)考虑飞损后干生料实际消耗量: (2-6)/熟料考虑飞损后生料(含物理水)实际消耗量: /熟料 (2-7) (3)入预热器生料量ms+myh1.6930。175mr/熟料 (28)(4)空气消耗量理论空气用量 6.627 Nm3/煤粉 (29)8。569/煤粉 (210)窑头用实际干空气量由于过剩空气系统y1。05,窑头用燃料占47%,则窑头用实际干空气为:3.270mr Nm3/熟料 (211)4.299mr /熟料 (212)其中: 一次空气:Vy1k=3。270mr0。29=0.
11、948mrNm3/熟料 (213) my1k=4.299mr0.29=1.226mr/熟料 (214) 二次空气:Vy2kmr0。642.0933。270mrNm3/熟料 (2-15) my2k4.299mr0。642.707mr/熟料 (216) 窑头漏风:VyLok3。270mr0。070。229mr Nm3/熟料 (217) myLok4.299mr0。090.296mr /熟料 (218)分解炉从三次风管抽风量分解炉出口过剩空气系数:F1。25出分解炉过剩空气量:(F-1)Vlkmr=(1.25-1)6.627mr1。657mr Nm3/熟料 (2-19)分解炉用燃料燃烧理论空气量:0
12、.53Vlkmr0.536.627mr3。512mr Nm3/熟料 (2-20)窑尾废气中过剩空气量:(1.051)0.476。627mr0.156mr Nm3/熟料 (2-21)分解炉漏风量:VFlok0.050.536.627mr0.176mr Nm3/熟料 (2-22)mFlokVFlok 0.176mr1。2930.228mr /熟料 (2-23)分解炉从三次风管抽风量: VF2k1.657mr3.512mr0.156mr0。176mr4。837mr Nm3/熟料 (2-24)MF2kVF2kk4。837mr1。2936。254mr /熟料 (225)旋风预热器系统漏风量(为5级预热器
13、)VxLok0。055Vlkmr=0。0556。627mr=1.657mr Nm3/熟料 (226)mxLokVxLokk1。657mr1。2932.142mr/熟料 (2-27)气力提升泵喂料带入空气量:0。1180。012mr Nm3/熟料 (2-28)0。1180.012mr1.2930.1530.016mr/熟料 (2-29)进入冷却机冷空气量:VLk2.14 Nm3/熟料 (230)mLk2.141。2932.767/熟料 (2-31)物料总收入:mzsmr+ms+myh+mylk+mylok+mFlok+mxlok+msk+mLk 4.613+4.273mr/熟料 (2-32)2)
14、支出物料(1)出冷却机熟料量:msh1(2)预热器出口飞灰量:mfh0.141(3)冷却机烟囱排出空气量:2.146.930mr Nm3/熟料 (233)=2。7678.961mr/熟料 (2-34)(4)预热器出口废气量生料中的物理水:Ws0生料中的化合水生料中CO2的百分含量:35.10% (235)生料中化合水的百分含量:% (2-36)生料中的化合水量:0.0070。001mr/熟料 (2-37)=0。009-0.001mr Nm3/熟料 (2-38)生料中分解的CO2:0.545-0。061mr/熟料(2-39)=0.277-0。031mr Nm3/熟料 (2-40)燃料燃烧生成的理
15、论烟气量:1.241mr Nm3/熟料 (2-41) 5。224mr Nm3/熟料(2-42)0.517mr Nm3/熟料 (243)=0.002mr Nm3/熟料 (244)Vf(1.241+5。244+0。517+0。002)mr7。004mr Nm3/熟料 (245)9.456mr /熟料 (246)烟气中过剩空气量:Vk=(1.251+0。055)Vlkmr=3.314mr Nm3/熟料 (2-47) 其中:N2mr Nm3/熟料 (2-48)mr /熟料 (2-49)O2mr Nm3/熟料 (2-50)mr /熟料 (2-51)气力提升泵喂料用空气 Vsk0。118-0。012mr
16、Nm3/熟料 (252)msk0。153-0.016mr /熟料 (253) 其中:N20.0930。009mr Nm3/熟料 (254)mr/熟料 (255)O20.0250。003mr Nm3/熟料 (2-56)mr/熟料 (257)废气总量:0.426+10。274mr Nm3/熟料 (2-58)0.727+13.644mr/熟料 (2-59)物料总支出:4.635+4。683mr/熟料 (260)3。热量平衡1)收入热量:(1)燃料燃烧热:25376mr KJ/熟料 (261)(2)燃料带入显热:46.4mr KJ/熟料 (262)(3)生料带入显热:69。9-7.9mr KJ/熟料
17、(263)(4)入窑回灰带入显热:5.9 KJ/熟料 (3-64)(5)空气带入显热:窑头一次空气带入显热:=57。244mr KJ/熟料 (265)进入冷却机空气带入显热:129。197 KJ/熟料 (266)气力提升泵喂料带入空气显热:7。70。8 mr KJ/熟料 (267)窑头漏风带入显热:0.296mr1.2973613.820mr KJ/熟料 (2-68)分解炉漏风带入显热:0.228mr1。2973610.646mr KJ/熟料 (2-69)旋风预热器系统漏风带入显热:1。7141.2973680.03mr KJ/熟料 (2-70)热量总收入:zsQrR+Qr+Qs+Qyh+Qy
18、lk+QLk+Qsk+QyLOk+QFLOk+QxLOk 212.697+25575。44mr KJ/熟料 (2-71)2)支出热量(1)熟料形成热对于用石灰石和粘土配料的生料,在不考虑碱的影响时,熟料形成热按下列公式计算: (2-72)1750。7 KJ/熟料(2)出冷却机熟料带走显热: 0。825200165 KJ/熟料 (2-73)(3)预热器出口废气带走显热:229。4+5268.43mr KJ/熟料 (274)(4)预热器出口飞灰带走显热: 3 519。276+3 371。23mr KJ/熟料 (280)由 收入热量支出热量得 212。697+25 575。44mr3 519.276
19、+3 371。23mr (281)即mr0。149 9/熟料则可列出物料平0.1410。90937047。42 KJ/熟料 (2-75)(5)飞损飞灰脱水及碳酸盐分解耗热:0.056 KJ/熟料 (2-76)(6)冷却机烟囱排出空气带走显热: =616。7-1997。2mr KJ/熟料 (2-77)(7)系统表面散热损失:QB540 KJ/熟料 (2-78)(8)冷却水带走热量:QLs170 KJ/熟料 (279)热量总支出:表3-4 物料平衡表收入项目kg/kg熟料%支出项目kg/kg熟料%燃料消耗量0.149 92。85出冷却机燃料量1。00019。03入预热器生料量1。66831。75预
20、热器出口飞灰量0.1412。68一次空气量0。1843.50预热器出口废气量2.68951.18入冷却机冷空气量2。76752。67冷却机烟囱排出空气量1.42427。09生料带入空气量0。1512.87-系统漏入空气量0。3346。36-合计5.254100.00-3)。熟料单位热耗效率(1)熟料单位热耗:0。149 925 3763 803。9KJ/熟料 (282)(2)窑的热效率:46.01% (2-83)表35热量平衡表收入项目kg/kg熟料支出项目kg/kg熟料%燃料燃烧热3 802。593。98熟料形成热1 750。740。26燃料带入显热7.00。17出冷却机熟料带走显热165。
21、04。08生料带入显热68。71。80预热器出口废气带走显热1 033.625。55入窑回灰带入显热5.90.15预热器出口飞灰带走显热47.41。17窑头一次空气带入显热6.60。16飞损飞灰脱水及分解耗热0.060.00入冷却机冷空气带入显热99。22.45冷却机烟囱排出空气显热317。37.84生料带入空气显热7。60。19系统表面散热损失54013。35系统漏入空气显热16。80.42冷却水带走显热1704.20合计4 046100。00合计4 046100.00五。 工艺流程的确定及设备选型工艺流程设计:包括工艺流程图设计和工艺流程说明1车间工艺流程简述 1)。物料流程: 来自生料均
22、化库的生料经悬浮预热器的C1与C2筒的气体管道加入,随来自C2筒气流进入到C1旋风筒内,经过选粉后进入C2与C3筒的气体管道内,随来自C3筒的气流进入C2旋风筒内.经过旋风筒后进入C3与C4筒的气体管道内,随来自C4筒的气流进入C3旋风筒内。经过旋风筒后进入C4与C5筒的气体管道内,随来自C5筒的气流进入C4旋风筒内。再经过旋风筒后进入分解炉,经分解后随气流进入C5.接着进入到回转窑,经高温煅烧成水泥熟料后进入篦式冷却机冷却,冷却后的熟料由胶带输送机送至熟料库。 2).气体流程:冷却机部分配有大型的风机,不断的吹冷风对来自回转窑的熟料进行冷却,经过热交换的高温气体,一部分经过电收尘由烟囱排出,
23、一部分由专门的三次风管道送至分解炉进行煤粉的燃烧,剩余的一部分气体进入回转窑,配合煤粉燃烧器使煤粉充分燃烧.窑内的废气由窑尾隧道进入分解炉,用来煤粉的燃烧.炉内的废气进入C5旋风筒,由管道输送至上一级筒内,如此进行,直到废气进入到C1筒内由专门的气体管道输送到增湿塔。经过增湿的气体一部分经过电收尘排向大气,一部分输送到生料磨11.3).车间工艺流程见下图大气预热器分解炉回转窑提升机冷却机收尘器熟料仓生料去生料仓空气物料六。主要设备及附属设备的选型包括主要窑型及附属设备的选型。1窑型选择 预分解技术的特点是在预热器和窑之间增设分解炉,在分解炉中加入占总用量5060的燃料,使燃料燃烧发生生料的预热
24、和分解过程,在悬浮或沸腾态下进行。入窑的生料分解率事达90%左右,因此窑的热负荷大为减轻,而产量却成倍增长。由于窑的单位容积产量高,窑衬寿命长,在单机产量相同的情况下,窑的体型较小,占地面积减少,制造、运输和安装较易,基建投资较低,且可制造单机产量8 000-10 000t/d的大型窑,由于一半以上的燃料是在较低温度(900左右)下燃烧的,故产生的有害气体NO较小,减少了对大气的污染。预分解窑的热耗约为3 1003 280KJ/kg熟料(740-780KJ/kg熟料),电耗与悬浮预热窑大致相同.鉴于此,本设计选择了带NSF型预分解窑。2预分解窑主要设备的设计计算 1)回转窑规格计算 (1)回转
25、窑内径: Di= (4-1) 式中 G窑每天产量,t/d; Di窑有效内径,m; K与回转窑型号有关的系数(5060),本次取K=60 则 Di=4。36m (4-2) 根据我国建材行业标准JC33391,为耐火砖最小厚度,与筒体内径有关。D4m时,220m。所以取耐火砖的厚度为220mm, 则 窑筒体内径D=Di+2耐火砖=4。36+20.22=4。8m (4-3) 窑长: 取窑长径比为15,则窑长L=4。815=72m (44) (2)回转窑功率 No=kDi2。5LN (4-5) 式中 No回转窑功率,KW; Di-窑的有效内径,m; L窑长度,m;N窑的转速,r/min;取最大转速为3
26、r/min; K-系数,预分解窑为0.0450.048,本设计取0.046; 则 No=0.0464。362。5723=394.4 KW (4-6) 选用电机时,电机功率N=(1。151。35)No。由于转速取值较大,本次系数可取1.2; 则 N=1.2394.4=473.3 KW (47) (3)窑筒体支承点配置 本设计采取的是3档相同托轮支承装置,使3档支反力尽量相等,以方便设计及节约成本9.筒体出料端悬臂长(档) 由于窑筒体出料端悬臂长度与窑的冷却带长度有关,也就是第一档支承点尽量远离烧成带最高温度点,对预分窑取1.25D比较合适。 L1.254。86。0(m) (4-8)中间档支承点设
27、置(档) 根据支承点设置时尽可能远离烧成带和一般限定跨度不超过20m,则档支承设置在离出料口6D处: L=64.8=28。8(m) (49)筒体进料端悬臂长(档) 一般来说,为了充分利用进料端支承装置支承能力,降低中间档支承的支反力,希望将进料端悬臂长取得更长些。但是冷端悬臂越长,经长期停窑后,其端部下弯挠度值越大,带来窑尾密封偏摆值越大,对密封工作很不利。根据回转窑窑尾密封允许偏摆值以及长期的积累经验,进料端悬臂长3.3D.则: L=3D=34。8=14.4(m) (410) 2)分解炉的设计计算 分解炉将原来主要在回转窑内堆积状态下进行的生料分解过程转移到分解炉内的悬浮状态下进行,从而大大
28、提高了入窑生料的分解率和窑系统的产量,并将原来用于回转窑的部分燃料转移到分解炉内燃烧,从而大大提高了系统的热效率。 (1)分解炉规格的计算 分解炉的确定,主要是根据窑的产量配备恰当型式和规格的分解炉。分解炉的规格按下面方法计算:分解炉的有效截面积:18.96 (4-11) 分解炉的直筒有效内径:4.91 m (412) 分解炉高度:H22.83 m (2)分解炉附属设备的设计 入炉专用风管直径 入炉风管为三次风管一般按管内风速20(m/s)左右计算,取窑径的0.6D左右。 三次风管直径:D0。64。82。88 m (4-13) 分解炉用一次风 当分解炉需用一次风时,可按炉用燃料燃烧总风量的10
29、%左右考虑。 3)熟料冷却机的选型计算 冷却机在水泥工业中不仅肩负着高温熟料的冷却,输送和热能回收,而且其性能的好坏决定着熟料的冷却质量,设备故障率(工艺、机械、电气)及热能回收效率的高低,直接影响着窑的稳定运转和系统热耗. (1) 熟料冷却机的选型的原则 冷却机应有较高的热效率,即在尽可能少的空气量的情况下将熟料冷却到最低温度。 冷却机应具有很高的耐久性,即长期安全运转。 应有利于环境保护. 有较好的适应性。(2)冷却机的选择 篦式冷却的热效率约为6570%,在最佳情况下冷却的熟料温度约高于周围环境温度50,空气耗量22.8Nm3/kg熟料,动力消耗约为50。457.6MJ/t熟料(1416
30、KWh/t熟料),而用于冷却的动力消耗约为21.625。2 MJ/t熟料(67 KWh/t熟料).鉴于此本设计选择第三代篦式冷却机12。 (3)篦式冷却机的选型计算 热端宽度:B热=0。64。8=2.84m; (4-14) 冷端宽度:B冷=0.84。8=5。44m. (415) 取热端长度与冷端长度之比为1:2,蓖床有效面积136m2。 所以: L=S/B=136/5。44=25m (416) 热端长:8。33m 冷端长:16。66m3.附属设备的选型计算 水泥干法生产有意义的发展是在窑尾预热器系统内,高度分散的生料在悬浮状态下进行气固热交换。其传热迅速、热效率高、单位容积较湿法窑产量大、热耗
31、低8,9。 1)。旋风筒直径旋风筒直径公式: (4-17)表41各级旋风筒的分离效率、圆筒断面风速如下表旋风筒C1C2C3C4C5分离效率(%)95858585909095圆筒断面风速VA(m/s)34665。5655.5 由于C1级筒要求分离效率较高,断面风速低,还要求个数多且筒体小的旋风筒,所以设C1筒为双排筒。取: VA1=4(m/s);VA2,VA36(m/s);VA4,VA55。5(m/s);且Q=113.78m3/s 则:C1筒直径:D1=4。26m (418) C2,C3筒直径:D2 =4.91 m,D34.91 m (4-19) C4,C5筒直径:D45。13 m,D55。13
32、 m (420) 2)。进风口的型式,尺寸和进风型式 进风管的结构为矩形,C1筒取a/b0.5,其余各级取a/b0。6,且有ab/D2=0.2, 则: C1筒进风口直径为:a=1。35 m,b=2。70 m (421) C2,C3筒进风口直径:a=1。70 m,b=2.83 m (422) C4,C5筒进风口直径:a=1。78 m,b=2.96 m (423)旋风筒气流进风型式为:涡卷式(180) 3).排气管直径尺寸 排气管内径(d)平均为筒体内径(D)的5055,取d0.5D,则:C1筒排气管直径为:d2。13m C2,C3筒排气管直径:d2。46m (424) C4,C5筒排气管直径:d
33、2.56m (4-25) 4)。旋风筒高度表4-2各级旋风筒高度H,H1及H2之间的关系C1C2,C3C4,C52.531.81。821。240.971.24706570 为了便于生产和节约成本分别取K1为2.5,1。8,2;为70,70,70则: C1筒高度:H10。65m (4-26) C2,C3筒高度:H8.84m (4-27) C4,C5筒高度:H10。26m (4-28) 则圆锥体(H1)和圆柱体(H2)尺寸为: C1筒:H15。28m,H2HH1=5.37 (429) C2,C3筒:H14.76m,H2HH1=4.08 (430) C4,C5筒:H16。36m,H2HH1=3.90 (4-31) 4风机的计算及选型 (1) 回转窑系统后排风机的选型 风量: V=1000kGVg(273+t)101325/273P=1 176 487。27m3