收藏 分销(赏)

八年级数学下册-第十九章-一次函数19.2-一次函数19.2.1-正比例函数教案-新人教版.doc

上传人:精*** 文档编号:2221729 上传时间:2024-05-23 格式:DOC 页数:5 大小:72.54KB
下载 相关 举报
八年级数学下册-第十九章-一次函数19.2-一次函数19.2.1-正比例函数教案-新人教版.doc_第1页
第1页 / 共5页
八年级数学下册-第十九章-一次函数19.2-一次函数19.2.1-正比例函数教案-新人教版.doc_第2页
第2页 / 共5页
八年级数学下册-第十九章-一次函数19.2-一次函数19.2.1-正比例函数教案-新人教版.doc_第3页
第3页 / 共5页
八年级数学下册-第十九章-一次函数19.2-一次函数19.2.1-正比例函数教案-新人教版.doc_第4页
第4页 / 共5页
八年级数学下册-第十九章-一次函数19.2-一次函数19.2.1-正比例函数教案-新人教版.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、八年级数学下册 第十九章 一次函数19.2 一次函数19.2.1 正比例函数教案 新人教版八年级数学下册 第十九章 一次函数19.2 一次函数19.2.1 正比例函数教案 新人教版年级:姓名:519.2 一次函数19.2.1 正比例函数【知识与技能】1.初步理解正比例函数的概念及其图象的特征.2.能够画出正比例函数的图象.3.能够判断两个变量是否能够构成正比例函数关系.4.能够利用正比例函数解决简单的数学问题.【过程与方法】1.通过实例,体会建立数学模型的思想.2.通过正比例函数图象的学习与研究,感知数形结合思想.【情感态度】结合描点作图,培养学生认真、细心、严谨的学习态度.【教学重点】正比例

2、函数的概念、图象与性质.【教学难点】正比例函数的特征.一、情境导入,初步认识请学生预习、自学教材,并讨论课本“思考”的问题.【答案】(1)l=2r;(2)m=7.8V;(3)h=0.5n;(4)T=-2t.观察这些解析式有什么共同特点?由学生讨论,教师总结.一般地,形如y=kx(k是常数,k0)的函数,叫做正比例函数,其中k叫做比例系数.请学生列举日常生活中的正比例函数的模型,举例如下:(1)利率不变的情况下,利息随存款数的变化而变化.(2)某本书的单价不变,销售额随售出图书数量的变化而变化.(3)火车速度不变,行驶距离随时间的变化而变化.(4)单位千克邮价不变,邮费随邮包重量的变化而变化.例

3、1 已知y=(k+1)x+k-1是正比例函数,求k的值.【分析】联想正比例函数定义可知,应用时考虑k+10,k-1=0,综合可得k=1.【教学说明】这类问题看三点:(1)自变量的最高次数为1;(2)含自变量x的系数k0;(3)常数项为0,三者必须同时满足.例2 根据下列条件求函数的解析式.(1)y与x2成正比例,且x=-2时,y=12.(2)函数y=(k2-4)x2+(k+1)x是正比例函数,且y随x的增大而减小.【分析】(1)根据正比例函数的定义,可设y=kx2,再由x=-2,y=12代入求得k值;(2)注意题中要求,及式子特点,结合定义与性质考虑.解:(1)设y=kx2(k0),把x=-2

4、,y=12代入得(-2)2k=12,k=3,即y=3x2.(2)由题意得:k2-4=0,k=2或k=-2.又y随x的增大而减小,k+10.故k=-2,即y=-x.【教学说明】(2)中含有自变量x的二次方,由题意知解析式应不含二次项,故令其系数为0.二、思考探究,获取新知师生共同画出y=x,y=-x的图象,并鼓励学生探索图象特征,引导学生归纳的结果围绕以下几个方面:(1)两图象都是经过原点的直线.(2)函数y=x的图象从左向右递增,经过一、三象限.(3)函数y=-x的图象从左向右递减,经过二、四象限.教师总结正比例函数的图象与性质:一般地,正比例函数y=kx(k是常数,k0)的图象是一条经过原点

5、的直线,当k0时,直线过第一、三象限,y随x的增大而增大;当k0时,直线过第二、四象限,y随x的增大而减小.例1 已知正比例函数的图象过点(2m,3m),m0,求这个正比例函数的解析式.解:设正比例函数的解析式为:y=kx.把(2m,3m)代入得3m=k2m,解得k=.解析式为y=x.【教学说明】正比例函数中只含有一个待定系数,只需知道一点坐标即可求得其解析式.例2 已知(x1,y1)、(x2,y2)是直线y=-x上的两点,若x1x2,则y1,y2的大小关系是( ).A.y1y2 B. y1y2 C. y1= y2 D.不能比较【分析】因为y=-x中-0,即直线y=-x的函数值是随x的增大而减

6、小的,所以当x1x2时,y1y2,故选A.【教学说明】通常我们在x的某一范围内取x1x2,若点(x1,y1),(x2,y2)为函数图象上的两点,当y1y2时,该函数在这个范围内y随x的增大而增大;当y1y2时,该函数在这个范围内y随x增大而减小.三、运用新知,深化理解1.已知正比例函数y=(k+3)x.(1)k为何值时,函数的图象经过一、三象限.(2)k为何值时,y随x的增大而减小.(3)k为何值时,函数图象经过点(1,1).2.已知y-3与x成正比例,当x=2时,y=7,求y与x之间的函数解析式.3.在函数y=-3x的图象上取一点P,过P点作PAx轴,已知P点横坐标为-2,求POA的面积(O

7、为坐标原点).【教学说明】以上各题由学生自主探究,有疑问的教师加以指导,最后评析.【答案】1.(1)k-3;(2)k-3; (3)k=-2.2.设y-3=kx,当x=2时,y=7,代入得7-3=2k,k=2,即y-3=2x,则y=2x+3.3.点P在函数y=-3x的图象上,且P点的横坐标为-2,y=-3(-2)=6,即P点的坐标为(-2,6).SPOA=1226=6.四、师生互动,课堂小结问题1.什么是正比例函数?其解析式是什么?2.正比例函数的图象是什么?它有什么特征?3.如何简便地画出正比例函数的图象?4.本节课的学习经历了怎样的过程?你有何感悟?1.布置作业:从教材“习题19.2”中选取.2.完成练习册中本课时练习.因从本课时开始,学生将逐渐认识并理解各类具体的函数图象,一般的基本方法是由解析式画图象,再由图象得出性质,再反过来由函数性质研究图象的其他特征,结合学生已有的知识与经验和后面的学习内容与要求,本课时重在引领学生认识正比例函数的概念、图象的画法和应用性质的基本步骤,为后续学习指明方向和打下坚实的基础,利于研究更复杂的具体函数.教学中引导学生观“形”识“信息”,逐步形成读图能力,以及解题能力.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服