1、本科毕业设计(论文)基于脉冲激光的测距系统设计 燕山大学毕业设计(论文)任务书学院:电气工程学院 系级教学单位:仪器科学与工程系学号1101 学生姓名 专 业班 级精仪11-2题目题目名称基于脉冲激光的测距系统设计题目性质1.理工类:工程设计 ();工程技术实验研究型();理论研究型( );计算机软件型( );综合型( )。2.文管类( );3.外语类( );4.艺术类( )。题目类型1.毕业设计() 2.论文( )题目来源科研课题( ) 生产实际( )自选题目() 主要内容1. 掌握脉冲激光法测距的基本原理,了解影响测量性能的因素;2. 以二极管激光器作为激光发射源,设计激光测距系统,主要包
2、括脉冲激光发射电路、激光接收电路,并用仿真软件进行模拟分析。基本要求1. 完成激光测距系统的总体方案设计;2. 完成关键部件的选型与设计;3. 通过仿真软件对所设计系统进行模拟、调试;4. 按照燕山大学电气学院本科生学位论文撰写规范完成毕业设计说明书(论文)的编写。参考资料1. 刘锋,脉冲半导体激光测距机的研制及应用J,红外与激光工程,20032. 周炳琨,激光原理M,国防工业出版社,20013. 朱林泉,现代激光工程应用技术M,国防工业出版社,2008周 次14周58周912周1316周17周应完成的内容熟悉任务,查阅相关资料,完成设计方案和技术分析。关键部件的选型、设计、分析和计算。完成算
3、法与硬件电路设计,对系统进行仿真调试。整理数据,完成论文。制作PPT,准备答辩。指导教师: 徐伟职称:讲师 2014 年 12月 30日系级教学单位审批: 年 月 日摘要摘要激光具有高亮度、高方向性、高单色性和高相干性等优点,所以,利用激光传感器技术和自动控制技术相结合的测距方案中,激光测距是目前应用最普遍的一种,本课题介绍了激光传感器的原理和特性,以及Atmel公司的AT87C51单片机的性能和特点,并在分析了激光测距的原理基础上,指出了设计测距系统的思路和所需考虑的问题,给出了以AT87C51单片机为核心的低成本、高精度、微型化数字显示激光测距的硬件电路和软件设计方法,该系统设计合理,工作
4、稳定,能量良好,检测速度快,计算简单,易于做到实时控制,并且在测量精度方面能达到工业应用的要求。并且应用TDC-GP21时间测量原理,设计了基于TDC-GP21的时间间隔测量单元。关键词激光;测距;单片机;TDC-GP2I第1章 绪论 AbstractLaserpossesseshighbrightness,highdirectional,highmonochromaticandhighcoherence and so forth,therefore, combining the laser sensor technology and automatic control technology
5、in the distance measurement,laser ranging is one of the most popular applications. The principle and characteristics of laser sensor are introduced in this paper, and the performance and characteristics of AT87C51 single chip microcomputer.And on the basis of analyzing the principle of laser ranging
6、, the idea and the problem of the design of ranging system are pointed out.The hardware circuit and software design method of low cost, high precision and micro digital display of the core of AT87C51 microcontroller are given,the system is reasonable, stable, and energy is good, the detection speed
7、is fast, and the calculation is simple. And the system is easy to do real-time control, and the measurement accuracy can meet the requirements of industrial applications.And the time interval measurement unit based on TDC-GP21 is designed by using TDC-GP21 time measurement principle.Keywords:laser;
8、ranging; microcontroller; TDC-GP2IX目 录摘要IAbstractII第1章 绪论11.1 课题背景11.2 国内外研究现状21.2.1 国外方面21.2.2 国内方面31.3 研究意义41.4 本论文研究的内容4第2章 脉冲激光测距的基础52.1 脉冲激光测距的原理52.2 脉冲激光测距的性能方程72.3 脉冲激光测距仪的信噪比方程102.3.1 脉冲激光探测器的光探测原理102.3.2 信噪比方程102.4 脉冲激光测距仪的测距性能指标122.4.1 最大测程132.4.2 探测灵敏度132.4.3 距离误差142.5激光脉冲飞行时间法的关键技术152.5.
9、1 时间间隔测量技术152.5.2起止时刻时间鉴别技术162.5.3回波信号探测技术172.6 本章小结19第3章脉冲激光测距系统的设计203.1 脉冲激光测距系统结构203.3 脉冲激光接收电路223.3.1 雪崩光电二极管APD223.3.2 APD驱动电路223.3.3 高压发生电路233.3.4反馈回路243.2.5放大电路243.4 本章小结26第4章 计时及显示部分设计274.1计时部分274.1.1时刻鉴别电路设计274.1.2 预鉴别恒定比值时刻鉴别电路设计304.1.2 时间间隔测量原理314.1.3基于TDC-GP2高精度时间间隔测量模块设计324.2 距离计算部分334.
10、2.1单片机最小系统344.2.2 计算部分子程序设计364.3计算机控制LED显示部分364.3.1 LED364.3.2 74HC573384.3.3单片机控制的LED显示部分电路设计384.3.4显示部分程序设计394.4系统控制部分设计404.5 本章总结40结论41参考文献43致谢45附录1 程序代码附录2 开题报告 附录3 中期报告III 第1章 绪论1.1 课题背景激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”和“奇异的激光”。它的亮度为太阳光的100亿倍。它的原理早在1916年已被著名的美国物理学家爱因斯坦发
11、现,但直到1960年激光才被首次成功制造。激光是在有理论准备和生产实践迫切需要的背景下应运而生的,它一问世,就获得了异乎寻常的飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且导致整个一门新兴产业的出现。当前激光技术的应用远远超出了军事领域,它己渗入到人类活动的各个方面。在科学研究、军事技术、能源开发、工农业生产、信息产业及医疗卫生等方面,激光也正作为新的技术发挥着巨大的作用,融入到我们的日常生活中。诸如文化、娱乐、商业贸易等等。总之,当今激光及其相关技术已经成为一个与人类社会息息相关、不可缺少的庞大产业。相信在新的世纪,激光技术将会给人类的生活带来全新的改变。早在史前文明时期
12、,便出现了关于距离测量的技术,不过,这些测量技术被称为接触测量,一直持续了几千年。由于接触测量具有很大的局限性,非接触测量1技术便应运而生。激光便被应用于距离测量中来,八十年代,远程、中程、近程的激光测距主要采用YAG激光器,但随着半导体激光二极管LD技术的出现和日臻完善,开始应用于中、短程测距和成像雷达之中,它具有体积小、重量轻、结构简单、使用方便、对人眼安全等一系列优点。九十年代国内外开始大力发展LD激光测距雷达和成像雷达,在中、短程激光雷达应用方面逐渐取代YAG激光雷达的趋势。近年来发展了一种便携式、对人眼安全、无合作目标、低价的适用于家庭的LED激光测距仪 2。在民用方面,例如:在钢铁
13、厂和轧钢厂用于过程监控、行车定位系统、装卸处理设备的定位系统、大型工件装配定位等等。激光测距代替了人工测尺,解决了有人为因素带来的精度误差问题,而且测量速度更快,大大提高3了工作效率。 在军事方面,世界各国的军事竞赛促进了各项科技的飞速发展,激光从军方的青睐,目前,世界各国对激光测距的研究越来越多,各种不同型号的激光测距仪得到了广泛的应用。例如:机载脉冲激光测距仪,舰载脉冲激光测距仪以及导弹靶场脉冲激光测距仪等等。脉冲激光测距是由单脉冲激光器向目标发射激光脉冲,然后通过测算被目标反射回来的光脉冲的往返时间,从而计算出目标的距离,这被称为飞行时间法。如今,随着激光技术的深入发展,激光测距开始逐步
14、代替传统的测距方法,将会对测距行业产生深远的影响。1.2 国内外研究现状 1.2.1 国外方面1960年,世界第一台红宝石激光器出现3,随即,美国的休斯飞机制造公司研制出了世界上第一台激光测距仪,被称为柯利达I型4。之后,激光测距技术迅速发展。美国Bushnell公司于1996年推出测距距离为400m的400型LD激光测距仪YD-400,同年,又研制出了测量距离为800m的800型激光测距仪。美国Leica公司也在同一年,研制出了实用的小型激光测距机,测距距离为0.2-30m5。20世纪70年代,美国,俄罗斯等国家的知名公司开始合作研发,推出的产品涉及工业、海洋和航天等各个行业。至今,激光测距
15、仪已经发展至第三代。第一代激光测距仪是采用0.69m的红宝石激光器及光电倍增管探测器,这也是最早的激光测距仪。20世纪70年代初,少量的激光测距仪开始装备到了军队里,例如美国的AN/GVS-3、日本的70型,但是,由于第一代的激光测距机效率较低、隐蔽性较差、体积大、重量大、耗电多等一系列的原因,很快被第二代激光测距机所取代。第二代激光测距仪采用了1.06m的Nd:YAG激光器和硅光电二极管或雪崩二极管作为探测器。与第一代相比,在隐蔽性、体积、重量、耗电等方面都有着很大的改善,因此,第二代激光测距仪开始迅速发展。美国于1977年研制出了AN/GVS-5型的第一台手持式Nd:YAG激光测距机,该测
16、距机的外形采用了普通手持式双筒望远镜的外形特征,而且大小与普通望远镜相当,重量仅为2kg。经过近些年的发展,激光测距技术的发展已经日趋成熟,激光测距仪已经发展至第三代6,称为人眼安全激光测距。其采用波长为1.54m的饵玻璃激光器和波长为10.6m的CO2激光器。例如美国的“斯米尔”人眼安全激光测距仪7。这类激光器具有在烟雾中的传输性好,兼容性好,对方探测困难等优点,但也存在一些问题,比如激光易被湿气吸收、目标反射率低、需要制冷等。目前,世界上在激光测距方面技术最发达的是瑞士的徕卡测量系统和德国的博世测距。当然,这时基于民用方面的手持式激光测距机而言的。就激光测距仪在军工方面的研究和应用来说,美
17、国是处于领先地位的8。1.2.2 国内方面国内的样机的研究是从20世纪70年代开始的,是在原来的固体和气体激光测距机的基础上发展起来的9。目前已经具备了基础技术,主要是解决工程应用方面的问题。国内研究激光测距仪的具体单位有:北京光仪厂、常州第二电子仪器厂、中国科学院上海光学精密机械研究所等10。1996年,中科院上海光学精密机械研究所研制出的半导体激光测距机的实验样机LD1,其测量精度达到了0.5m。该样机的基本参数为:激光发射脉冲的频率为1kHz、使用的激光器是国产的半导体激光器,其波长为800-900nm,测量距离为10-100m。后来,中国计量学院研制出了便携式激光测距仪,成果较为成功。
18、此测距仪的具体测量参数为:激光发射频率为100Hz,波长905nm,峰值功率10W,激光的脉冲宽度为25nm,测量范围从14-1000米,精度为1m11。但是,由于国内研究的激光测距机是小型化和低功耗等方面的产品,因此无法满足复杂环境下的军事上的特殊用途12,故而,国内的研究一般只是针对民用方面而言的。总体而言,国内对激光测距技术的研究尚处于发展阶段,技术还不够成熟,需要做的工作还有很多。由于起步较晚,所以更应该加快激光测距方面的研究步伐。1.3 研究意义随着科学技术的快速发展,激光将在测距仪中的应用越来越广。但就目前技术水平来说,人们可以具体利用的测距技术还十分有限,因此,这是一个正在蓬勃发
19、展而又有无限前景的技术及产业领域。展望未来,激光波测距仪作为一种新型的非常重要有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求,无庸置疑,未来的激光波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最终发展到具有创造力。在新的世纪里,面貌一新的测距仪将发挥更大的作用。1.4 本论文研究的内容如今,虽然激光测距有着广泛的应用,但国内的激光测距机与国外相比,依然有着很大的差距。研制低成本,高精度,大量程,低功耗的激光测距机有很大的现实意义。本课题通过对传统测距
20、仪的电路的研究及改进,力图设计出一款精度较高的激光测距仪,具体内容如下:(1) 研究脉冲激光测距系统影响精度的因素,主要包括影响时刻鉴别和时间间隔测量两个方面的原因;(2) 研究脉冲激光测距系统的原理,并设计出脉冲激光发射电路和激光脉冲接收电路;(3) 设计脉冲激光测距系统的具体算法; (4)以单片机为核心,建立软件平台,编写程序,并做好LED显示部分的工作。9第2章 脉冲激光测距的基础 第2章 脉冲激光测距的基础2.1 脉冲激光测距的原理 激光测距基本原理是通过测量光脉冲的飞行时间来测量其与目标之间的距离的。具体来说,激光测距仪向着目标发射一个光脉冲,经目标反射后,由测距仪的回波接收系统接收
21、,并且测量光脉冲从发射到返回所经过的时间。如此,测距仪与被测目标之间的距离就是光速和往返时间乘积的一半。脉冲法测距的精度一般维持在1m左右。脉冲激光测距的原理正是依据与此,用激光器向被测目标发射单个或一串的宽脉冲宽度的激光脉冲,激光脉冲到达被测目标之后反射回来,只需测量脉冲从发射到被接收所用的时间间隔,便可算出测距仪与目标间的距离。这一时间间隔成为飞行时间t,它可由计数器从激光脉冲起止所经过时钟脉冲的周期个数来确定,设在这段时间内,时钟脉冲周期为T,进入计数器脉冲个数为n,被测距离为s,则有: (2-1) 脉冲式激光测距仪具有测程远、测量速度快等特点。但是,由于脉冲激光测距的宽度及电路响应速度
22、等方面的问题,造成误差较大。一般应用于远距离探测的航天、军事等项目中。根据式 (2.1)可得脉冲激光测距精度,如式(2-2): (2-2)由式(2.2)可知,在光速一定的条件之下,激光测距精度主要取决于时间间隔的测量,其原理图2-1所示。如果计时电路在起止脉冲之间所记录的时标脉冲个数为n,则有式(2-3): (2-3)5CLK START t END 图2-1.脉冲法测量飞行时间原理其中,f为计时脉冲的频率,将式(2-3)带入式 (2-1)可得: (2-4)其中,代表每个时钟所对应的距离值,即当=100MHz时,由上式可以得到式(2-5): (2-5)由此式可得,时间间隔测量单元的频率对脉冲法
23、测量距离的精度有着莫大的影响,如式(2-6): (2-6)如果要提高脉冲法测距精度,就需提高时间间隔测量单元的频率,也称为晶振频率。如果时间间隔单元的频率提高,则相关的元器件的性能亦需要提高,就会增加系统设计的成本,因此也不可无限制地提高。112.2 脉冲激光测距的性能方程一束激光在大气中传播时,会有一定的辐射功率和发散角,在其传播过程中,由于大气的作用,有一部分光能被吸收,另有一部分被散射,如此一来,最终能够到达目标的辐射能量会减少许多。如果将目标看成二次光源,根据目标的漫反射的性质,可以求出在探测器方向上的激光辐射亮度,对目标的受照面积进行积分并考虑到回波信号在大气中的衰减作用,即可得到进
24、入探测器中的回波光功率。其原理如图2-1所示,为了使激光接收系统能够更多地接收激光发射系统的激光功率,并且能同时保证背景辐射尽可能少地进入激光接收系统,就必须使得激光接收系统的接收视场角r和激光发射角t之间能够有一个良好的匹配关系。理论上来说,最为简单的方法是使接收视场角和激光发射角相等,亦即r=t,在此情况下,发射光束的直径与接收视场的直径总是相等的。假设激光测距仪的发射和接收系统是非同轴的,并且激光光强是均匀分布的(事实上是按照高斯分布的13)。假设由发射系统所发射的激光的峰值功率为TtPt,激光束的立体角为t,则有,激光光源照射在被测目标上的辐射照度如式(2-7): (2-7)其中,是激
25、光的传输距离为R时的大气透过率,进一步,可得式(2-8): (2-8)式中,是大气消光系数,假设被测目标是理想的漫反射体,那么以被测目标作为二次辐射源向各个方向辐射的亮度可由式(2-9)得: (2-9)式中,是目标辐射出的辐射度,它的值为,为目标的漫反射度。由此可得出目标的辐射亮度为: 7 (2-10)假设激光测距仪接收系统的接收面积为,激光所发射的光束与距其远处目标相交的截面积为,任一面元与激光测距仪光轴夹角为,根据亮度的定义,则可得出以被测目标作为二次光源沿着激光测距仪的光轴方向辐射到其接收立体角内的辐射功率如式(2-11)所示: (2-11) 假设激光测距系统的接收视场,激光接收系统的透
26、过率,依据大气透过率,则可得出探测器所接收的光功率为: (2-12) 设被测目标的有效反射截面积为: (2-13)如此,激光测距系统对于较小的目标来说,其测距方程可改写为: (2-14)为了使式(2.14)能够适用于激光测距系统对大目标测距的情况,需要引入一个比例因子。由于激光测距系统的信噪比是衡量其性能的重要指标,因此为减小进入脉冲激光测距系统探测器中的外部噪声,在对小目标进行测量时,常常使其接收视场略小于激光束发散角14,只有在接收视场内的目标后向反射光功率才可被光电探测器接收,被光电探测器接收的功率与目标后向反射功率的比为。在此,令=,并将其与比例因子一起带入式(2.14)中,则脉冲激光
27、测距方程可写为: (2-15) 13式中: 激光测距系统的发射峰值功率 激光测距系统的接收峰值功率 发射光学系统的透过率 接收光学系统的透过率 接收光学系统的面积 目标漫反射系数 介质的单程透过率 目标距离 ,分别定义如下:式 (2.16)中,是目标的有效面积。它是由目标表面任一面元和激光束之间的夹角;以及被测目标被激光束所照射的有效面积来确定,即如式(2.13)所示。式(2.17)中,为激光发射束的发散角,是激光测距系统的接收视场角。 (2-16) (2-17)有上述推导可知,如想测距方程成立,则需要具备如下条件:1) 目标必须是理想的漫反射体;2) 目标距离与激光测距仪的横向尺寸相比足够大
28、;3) 接收视场;4) 忽略大气湍流对回波光功率的影响;5) 忽略目标及大气对激光回波光束时域特性的影响;6) 仅考虑目标后向反射的回波激光功率。激光测距方程直观地描述出了到达激光测距仪接收器的光电探测器的回波功率和测距机的发射功率、激光束发散角、光学系统的透过率以及其接9收视场等性能参数;传输介质的衰减,目标有效反射界面与反射率等目标特性之间的关系。此方程虽然只是一个简化方程,但依据实验结果,它依然可以估算出激光测距仪的最大探测距离以及影响激光测距系统的测距性能的相关因素,这是激光测距系统设计的理论基础。2.3 脉冲激光测距仪的信噪比方程如今,在光电子技术的实际应用中,一定会涉及到将光信号转
29、换为可观测信号的问题,本设计也不例外。一般来说,凡是把光辐射量转换为电量(电流或电压)的光探测器,均称为光电探测器。因此,光电探测技术在激光测距中有着重要的作用。2.3.1 脉冲激光探测器的光探测原理光电探测器的基本功能是将入射到探测器上的光功率转换成相应的光电流,即: (2-18)式(2.18)中,为电子电荷,为探测器的量子效率,它是由探测器的物理性质所决定的:-普朗克常数,-入射光频率。因此,要使传递的信息表现为光功率,利用光电探测器的这种直接的光电转换便可实现信息的解调,这种探测器被称为直接探测。由于光电流是相应于光功率的包络变化,因此直接探测也成为包络探测。因为直接探测具有实现简单和可
30、靠性好的优点,脉冲激光测距机等诸多光电设备一般都采用这种方法。现在,假设输入光电探测器的信号光功率为,噪声光功率为,光电探测器的输出电功率为,输出的噪声电功率为。2.3.2 信噪比方程一般来说,直接探测光电探测系统大多是从信号频谱和噪声频谱上的差别来抑制各种噪声,因此主动光电探测系统的发射信号必须是经过模拟或脉冲调制以后的调制信号,它的重要特性是它的频谱。设脉冲激光测距仪发射的周期矩形脉冲的光功率如图2-2所示,可表示为: 15 =+ (2-19)式(2.2)中,是激光脉冲的平均功率,是功率调制系数,其定义为: (2-20)忽略大气及被测目标影响激光脉冲调制特性的一些因素,则激光测距仪接收到的
31、由其发射并经目标反射回来的脉冲回波光波功率为: (2-21)式(2.21)中,为接收到的平均光功率,为接收到的信号光功率。经光电探测器转换以后,变成直流电流,被交流放大器过滤掉,而变成了电信号。对于脉冲激光测距仪则有,对进行傅氏积分可得: (2-22)是的频谱函数,或称为频谱密度。其特点为:1)信号能量主要集中在一定的频带范围内;2)当脉冲持续时间减小时,频谱中通过零点的频率也随之增高,频谱宽度也增大。 对于其他形状的非周期性脉冲也有同样的性质。因此,在探测较窄的脉冲信号时,应采用较宽的放大器。若激光脉冲的主要能量集中于带宽以内,则放大器带宽取为,就能使信号能量得到放大输出、噪声得到抑制。若以
32、雪崩光电二极管(APD)接收来考虑,则回波信号功率转换成的电信号电流为: (2-23)目标回波光功率和背景光功率引入的散粒噪声电流分别为: (2-24)11 (2-25)管子暗电流也将引入散粒噪声,考虑到探测器负载电阻和放大器引入的折合到光电探测器输出端的热噪声,接收系统输出的噪声电流的有效值为: (2-26)探测器负载电阻和放大器热噪声之和可以等效于温度升高后用一项来表示。由上面两式可得,激光测距仪接收系统输出的信噪比为: (2-27) 式中,-电流的倍增因子,-探测器接收的信号功率,-探测器的量子效率,-普朗克常数,-光波频率,-玻尔兹曼常数,-绝对温度,-接收系统带宽,-等效负载电阻,-
33、管后面视频放大器的噪声系数,与倍增过程相关的噪声系数,-探测器接收到的目标回波平均光功率,-探测器接收到的背景光功率,-管的体漏电流。对于管在白天工作时,典型的情况是背景噪声为主要项,则式可简化为: (2-28)由以上各式可知,影响脉冲激光测距仪性能的主要因素有激光测距仪的本身性能、激光的大气传输特性、背景辐射特性、被测目标特性等。2.4 脉冲激光测距仪的测距性能指标 脉冲激光测距仪就使用而言,其性能指标基本上可归纳为测量范围、测量精度及测量灵敏度等。 13 2.4.1 最大测程由测距方程式可知,随着目标距离的增大,激光测距仪接收到的目标回波功率迅速减小。当时,测距仪接收到的回波功率达到其最小
34、可探测功率。如果在测距方程中用最小可探测功率代替接收功率,则由测距方程可得到最大探测距离: (2-29)由上式可以看出,激光测距仪的最大测程不仅取决于测距仪自身性能,还取决于外部测距条件: (1)获得大的最大测程,在激光测距仪的系统设计中,必须提高激光测距仪的发射功率,增大接收孔径面积,增大发射光学系统和接收光学系统的透射率和,减小发射光束的发散角,提高接收灵敏度即减小接收机的最小可探测功率的数值。与此同时,系统设计还应考虑接收视场和光束发散角的匹配。 (2)激光测距仪的最大测程还与外部测距条件密切相关,大气透过率越高、被测目标的有效反射截面及漫反射率越大,激光测距仪的最大测程会大大增加。因此
35、,对激光测距仪测程的拟定与测试,必须要在一定外部约束条件下进行。2.4.2 探测灵敏度激光测距仪的探测灵敏度即最小可探测功率定义为,满足测距概率要求的最小信噪比所对应的探测功率。将代入激光测距仪接收系统输出的信噪比方程得探测灵敏度为:(2-30)由式(2.30)可以看出,激光测距仪的探测灵敏度与一定的探测概率相对应,系统所要求的探测概率越高,获得高探测灵敏度的设计难度越大。要获得高的探测灵敏度,必须对接收机进行优化设计。IX2.4.3 距离误差脉冲激光测距仪测得的目标距离与目标实际距离的偏差称为测距误差。它由和的测量误差所决定。在不考虑大气湍流的条件下,由于受大气的气压、温度、湿度的影响较小,
36、对于测程为几至几十公里的脉冲激光测距仪来说,由的变化引入的测距误差可以忽略。因此,测距误差主要由的测量误差造成,主要有以下三个误差源:1)距离计数器中的量化误差;2)激光脉冲宽度引起的探测误差;3)距离计数器时钟的频率误差。即: (2-31)1)距离计数器中的量化误差量化误差因激光发射脉冲、目标回波脉冲与时钟脉冲不同步,在数字电路中出现随机概率变化的时间误差。在理想情况下,计数器的计数误差,则可计算出相应的距离量化误差为: (2-32)式中,为距离计数器的时钟振荡频率。2)激光脉冲宽度引起的探测误差简单阈值探测电路中的探测误差是由激光脉冲有限上升时间以及目标对脉冲的展宽所引起的。有限上升时间使
37、低幅度脉冲比高幅度脉冲迟后越过阈值,由此显示的目标距离较长。因此,由此造成的距离误差是(或回波信号幅度)、阈值及激光脉冲波形的函数。假定目标回波脉冲具有线性的时间特性并具有均匀越过阈值的概率,则由探测误差引起的距离误差为: (2-33)式中,Rt为激光回波脉冲的上升时间S。3)距离计数器时钟的频率误差时钟频率误差由数字时钟振荡电路的频率漂移产生。因为时钟频率误差导致的计时误差随时间线性增加,因此距离误差是目标距离的线性函数,它15由下式给出: (2-34)式中,-测距仪最大测程,-时钟频率误差(几分之一个时钟频率)。2.5激光脉冲飞行时间法的关键技术2.5.1 时间间隔测量技术到目前为止,时间
38、间隔的测量主要有三种方法:模拟法、数字法和数字插入法15。 1) 模拟法:即在待测时间间隔内对一已知电容以大电流进行充电, 然后对其以小电流放电(),则放电时间为,实际测得。此方法的优点是测量精度非常高,可达皮秒量级;但由于电容充放电过程中,充放电时间之间的关系不是绝对线性的,存在非线性现象,其大小大致为测量范围的万分之一,这就限制了测量范围,或者说随着测量范围的增加,精度会降低;另外,电容的充放电性能受温度的影响非常大(达10-30ps/c),对测量系统的温度特性要求就非常苛刻。2) 数字法:即用同步时钟脉冲对时间间隔进行计时。其优点是线性好, 并与测量范围无关。由于其测量精度主要受时钟频率
39、所限,即它的测量精度为正负一个时钟周期。通常使用几百兆赫兹的时钟,精度为十纳秒量级;即使频率高达10GHz的时钟,精度也只有百皮秒,与之对应的距离为分米量级,测距精度显然非常低。可以通过采用多次测量取平均的方法来提高测量精度,但对于高速测量就无能为力了。3) 数字插入法:是通过采用数字法结合各种不同的插入方法来实现精确测量的,可以同时得到高单脉冲测量精度和高线性,能够适应高速、大测量范围和高精度的应用领域。目前,已有的插入方法主要有三种:延迟线插入法、模拟插入法和差频测相插入法。数字插入法是基于数字测量的方法,他继承了数字法的测量范围大和线性好的优点,同时通过插入法提高测量精度。数字法的时间间
40、隔测量误差主要来源于时钟脉冲的上升沿与测量开始和终止脉冲的上升沿之间的时间差和所导致的误差大小为其中为时钟脉冲周期,为测得时间间隔,为实际17时间间隔。运用插入法的目的就是通过在信号开始处与信号结束处使用各种插入法高精度测量与,从而求出,对测量结果进行修正。2.5.2起止时刻时间鉴别技术由于激光脉冲在空中传输过程中的衰减和畸变,导致接收到的脉冲与发射脉冲在幅度和形状上有很大不同,给正确确定起止时刻带来困难,由此引起的测量误差称为漂移误差;另外,由输入噪声引起的时间抖动也给测量带来误差。如何设计时刻鉴别单元以达到消除或减小漂移误差和时间抖动,是激光脉冲测距的重要研究课题之一。目前时刻鉴别的方法主
41、要有三种:前沿鉴别、恒定比值鉴别和高通容阻鉴别。前沿鉴别是通过固定阈值方式来确定起止时刻,即以脉冲前沿当中强度等于所设阈值的点到达的时刻作为起止时刻。由脉冲幅度与形状变化引起的漂移误差为,其大小还与阈值的大小有关,最大值可能接近脉冲上升时间。因此,前沿鉴别法的测量误差是很大的。恒定比值鉴别法的原理,是将起止时刻取在脉冲高度一定比值的地方,例如恒定比值取50%,即取脉冲上升沿中半高点到达的时刻为起止时刻,如不考虑波形畸变和噪声等其它因数的影响,由幅度变化引起的误差,由此可见,恒定比值鉴别法能有效消除由脉冲幅度变化带来的误差。为了有效地克服波形畸变和噪声带来的误差,提出了高通容阻时刻鉴别方法。接收通道输出的起止信号脉冲通过一高通容阻滤波线路,原来的极值点转变为零点,以此作为起止时刻点,它的误差主要受信号脉冲在极大值附近斜率的影响。时刻鉴别的误差除了跟所采用的鉴别类型有关外,还与激光回波脉冲波形和光电探测器的类型有关。激光回波脉冲是先经接收通道的光电探测器进行光电转换和前置放大后进入时刻鉴别单元的,光电探测器