1、“局域网技术与组网工程”课堂笔记“局域网技术与组网工程”课堂笔记一第1章 局域网技术基础 本章主要内容 局域网体系结构与标准 局域网的拓扑结构 局域网的传输媒体 局域网的互连 1.1 概 述 1.1.1 局域网的普及 一个微机系统应用于学校、办公楼、工厂、企业等场合,这些系统互连起来,实现系统之间交换 数据和共享昂贵的的资源。 (1)主要包括与其它用户交换报文、共同访问公共文件和数据资源; (2)实现硬件资源的共享,例如共享大容量存储器和高性能激光打印机等。 1.1.2 局域网的定义 在一个小区范围内,将分散的微机系统互连起来,实现资源的共享合同型,便构成了局域网 (LAN)。几点说明: (1
2、)局域网终端设备:又称为数据通信设备。主要包括:微机、服务器、终端、外围设备、传感 器(如温度、湿度、安全报警传感器等),数字电话、数字电视发送和接收机以及传真机等。 当然不是所有的LAN都能配置上述设备。 (2)局域网的地理覆盖一般可达几十公里范围; (3)局域网在传输媒体上的数据传输速率为10Mbps、100Mbps及1000Mbps。 1.1.3 局域网的技术要素 体系结构与标准 传输媒体 拓扑结构 数据编码 媒体访问控制 MAC 逻辑链路控制 LAC 1.2 局域网体系结构与标准 1.2.1 局域网参考模型 LAN参考模型是以IEEE802(国际电工电子工程师协会)标准的工作文件为基础
3、,并且采用参考模型 来分析这一问题。 1.局域网存在的四个特征 (1)它用带地址的帧来传送数据; (2)不存在中间交换,所以不要求路由选择。 (3)数据传输各层的对应内容: 第一层: 物理层,比特传输; 第二层: 数据连路层,组成帧,并进行一定的控制,主要包括:寻址、排序、流量控制、差错控 制等。 第三层: 网络层,完成路由选择。 (4)层二和层三的区别 层二是通过单个链路完成其功能,层三是通过数个链路完成的。 2.域网体系结构 3.局域网数据的传递(二层和三层) (1)最上层接收来自所连接的站的发送信息; (2)通过服务访问点(SAP)向下层交换信息,SAP是相邻层的逻辑接口; (3)发送时
4、将数据组装带有地址的差错检测字段的帧; (4)接收时拆卸帧,完成地址识别和差错检测; (5)管理链路上的通信。 4.物理层的主要功能 (1)信号的编码和译码; (2)前导码的生成和除去(前导码用于帧同步); (3)比特的发送和接收。 1.2.2 局域网媒体访问控制 1.么是MAC? 所有局域网均由共享该网络传输能力的多个设备组成。需要有某些方法控制对传输媒体的访问, 以便两个特定的设备在需要时可以交换数据。 2.体访问技术中的“方法” “方法”分为两种,指控制是在集中方式下还是在分布方式下来实现。 (1)集中方式: 某个控制器被指定拥有访问网络的控制权,此时,希望发送的某个站必须等待,直到他收
5、到该控 制器的准许,该站才允许发送。 (2)分布方式: 由各个站集体地完成媒体访问控制功能,动态地确定站的发送顺序。 (3)集中方式方案的优点和缺点: 优点a.可提供诸如优先权、保证带宽,具有较大的控制访问能力。 b.允许每个站有尽可能简单的逻辑; c.避免了协调问题。 缺点:a.会出现影响全网的单点故障; b.会发生瓶颈作用,时效率降低。 分布方式方案的优点和缺点:正好与集中式相反。 3.访问控制技术的分类 主要按同步和异步进行划分。矚慫润厲钐瘗睞枥庑赖。(1) 同步技术: 每个连接均被分配一个专用规定的传输容量。这种方式在局域网中不是最佳的,因为每个站发送 数据是随机的。 (2)异步技术:
6、 根据各站的发送情况分配传输容量,异步技术可进一步划分为:循环、预约、竞争三种情况。 1.异步技术三种方法 (1)循环: 给每个站轮流发送的机会,在此机会里,某站可以谢绝发送,或发送一定限度的信息。此限度为 每个站每次发送的最大数据量或最大时间量来表示。 (2)预约: 对于平稳流式的业务,预约技术是相当合适的。即将媒体(介质)上的时间划分为许多时隙,当 某站需要发送信息时,提前预约时隙。 (3)竞争: 对于突发式业务,竞争技术通常是合适的,各个站采取简单的竞争方式进行竞争发送数据。常用 的方式为循环和竞争方式。 1.2.3 局域网数据链路控制LLC 1.LAN的LLC与传统链路层的区别: (1
7、)它必须支持链路的多路访问特性; (2)它可利用MAC子层来实现链路访问中的某些功能; (3)它必须提供某些属于三层的功能。 2.LLC的主要功能: (1)端到端的差错控制功能; (2)端到端的流量控制功能; (3)完成无连接服务功能; (4)完成面向连接服务功能; (5)能进行复用,即多个不同的端点的数据在同一信道上传输。 3.服务访问点(SAP) SAP在每层中有若干个点,分别用SAP1、SAP2SAPn表示,每个SAP属于某站,但它又在LLC层有 若干个SAP,每个SAP均由一个自己的地址,例如A点LLC层的SAP,可简单表示为:(A,1),如下 图。下面来看各站的SAP之间是如何通信的
8、。 如上图,假设站A内有一个应用X,希望将电文发送给站C内的一个进程,(A为某PC内的报告生成 程序,C为一台打印机和一个简单的打印机驱动器) (1)站A的链路发送一个“连接请求”,的若干控制比特的帧,该帧内含源地址(A,1X),目 的地址(C,1M),及其它的控制比特。 (2)LAN将该帧传递给C站; (3)如果“C”站空闲,就返回一个“接受连接”帧,(如果不空闲,这需要等待); (4)当A站与C站建立连接后,就可以利用站A的LLC将来自X的全部数据组装成帧,每帧均含源地 址和目的地址; (5)在此段时间,所有寻找(A,1)的帧均被拒绝,除非是来自(C,1)的帧。同样(C,1)的 寻找帧也被
9、(C,1)拒绝,字节收(A,1)的帧。 (6)以上方式被称为面向连接服务。 在以上进行数据交换的同时,各站的其它SAP之间可以同时传递消息,例如,进程Y可以连接到 (A,2),并与(B,1)交换数据,这就是一个复用的例子。 1.2.4 寻址 1.信涉及三个因素:进程、主机、网络 (1)进程 是进行通信的基本实体,(也就是指软件程序)。我们举例说明两个站之间的进程是如何传递 的。(例如A站和B站) A站的进程通过PC机,然后通过网络与B站进程进行连接,并交换数据。进程在PC机上进行。 (2)主机 (3)网络 2.通信(含寻址)的过程 MH:必须包含一个用来唯一地标识局域网上某个站的目的地址,因为
10、对于每一个可接收的站必须 读出“目的地址”,如果和本站地址不同,则向下一站传送;如果和本站地址相同,则MAC实体标 剥除MH和MT,并且将剩余的LLCPDU向上传递,LLC子层的标头LH中必须包含SAP地址,以便LLC可 将该数据交付给哪个SAP。 MAC地址:表识局域网中的一个站; LLC地址:表识LLC上的某个SAP(某个用户)。 3.SAP的分布 (1)在每两层之间均有SAP(服务访问点),物理层上没有SAP。 (2)在网络接口单元(NIU)上的每个终端接口都具有一个唯一的SAP; (3)组地址: 某用户希望将数据发送给特定NIU上的所有终端用户,或者给整个局域网上的所有终端用户,这就
11、需要组地址。 a.广播方式; b.多址方式。 4.局域网寻址的多种方式 MAC地址LLC用户地址(服务访问点) 单个单个 单个多址 单个广播 多址广播 广播广播 多址单个 多址多址 广播单个 广播多址聞創沟燴鐺險爱氇谴净。1.2.5 局域网标准 1.3 局域网的拓扑结构 131星型拓扑结构 特点: (1)每个站由点到点链路连接到公共中心; (2)任意两站之间的通信均要通过中心点; (3)中心点可以是一个中继器,也可以是一个局域网的交换机; (4)发送数据的站以帧的形式进入中心点,以帧中的目的地址到达目的站点。 (5)目前局域网系统中均采用星型拓扑结构。 132 环形 特点: (1)由一组转发器
12、(又称为中继器)通过点到点链路连接成封闭的环所构成。 (2)以帧的方式传输数据,循环一周,在起始位除去。 (3)有令牌的站才可以发送帧。 133 总线和树型 树型特点:传输媒体是不构成闭合环路的分支电缆,也即在树型网络中,任意两个终端之间只有 唯一的一条路径。 总线型特点:只有传输媒体,没有交换机,也没有转发器。 1.4 局域网的传输媒体 传输媒体主要有双绞线、同轴电缆和光纤。 1.4.1 双绞线 1.物理描述 2.传输特性 (1)对模拟信号,约每56Km需要一个放大器; (2)对低频数字信号,每23Km需用一个转发器。 1.4.2 同轴电缆 分类: (1)CATV系统中使用75电缆,主要用于
13、宽带FDM模拟信号及高速数据。 (2)基带数字信号使用50电缆,对于模拟信号可达300MHz400MHz,每个电视信道分配6MHz的 带宽。 (3)带宽和速率的关系: 对于5Mbps或更高的速率可设定1Hz/1bps,如6MHzTV信道5Mbp速率。 对于较低速率可设计 2 Hz/1bps; 目前用整条同轴电缆(75)传送数据,可达50Mbps,距离一般为1Km左右。 1.4.3 光缆 传输特性:1014Hz1015Hz范围起波导作用。 多模:小角度的入射光纤被反射并沿光纤传播,其余光纤被周围媒体所吸收。 单模:纤芯半径降低到波长的量级时,只有单个角度或单个模,即只有轴向光束能通过。 1.4.
14、4 无线传输媒体 分类: (1)射频(RF):900MHz、2.4GHz、5.8GHz(无需申请的频率) (2)红外线(IR)800mm900mm波段,地域范围可达数十米,可获得10Mbps的数据传输率。 散射IR(DFIR):范围较小,但收发之间可有障碍物; 直射 IR(DBIR) :范围较大,但收发之间不能有障碍物。 1.5 局域网的互连 局域网的互连主要通过以下设备实现: (1)中继器(又称转发器,在物理层实现互连); (2)网桥(又称桥接器,在数据链路层实现互连); (3)路由器(在网络层实现互连); (4)网关(又称网间连接器,在传输层及以上实现互连)。 1.5.1 中继器 中继器,
15、又称重发器,主要是将信号再生放大,主要作用为: (1)将冲突域延长、扩大; (2)但不能将电路形成环路;中继的个数有限,主要为时延及负荷情况; (3)多口中继器又称为集线器,可分为电缆中继器(双绞线、同轴电缆)和光缆中继器。 1.5.2 集线器 集线器又称为集中器,用它作为一个中心节点,可连接多个传输媒体。集线器分为有源集线器, 无源集线器和智能集线器。 1.5.3 网桥 用于连接两个或两个以上具有相同通信协议、传输媒体及寻址结构的局域网网间的互连设备。 (1)网桥有它的软件和硬件。网桥需要有足够大的RAM(存储器)缓冲区,用于扩展网络距离和 转发数据到另一个目的网工作站。 (2)网桥具有寻址
16、和路径选择功能;网桥对广播信息不能识别,也不能过滤; (3)网桥又分为本地网桥和远程网桥。 本地网桥:指所连接的两个LAN间的距离在所允许的最大传输媒体长度之内的网桥。连接两个LAN 只需一个网桥。 远程网桥:必须加上调制解调器,而且连接两个LAN时需要两个网桥。 1.5.4 路由器 1.主要功能: (1)选择最佳的转发数据的路径,建立非常灵活的连接,均衡网络负载。 (2)利用通信协议本身的流控来控制数据传输,解决拥挤问题; (3)具有判断需要转发的数据分组的功能,判定某数据是否需转发。 2.路由器分为: (1)单协议路由器:对具有相同网络层协议的网络互连; (2)多协议路由器:对具有多种网络
17、层协议的网络互连。 1.5.5 网关(又称高层协议转发器) 用途:用于不同类型且差别较大的网络系统间的互联残骛楼諍锩瀨濟溆塹籟。“局域网技术与组网工程”课堂笔记二第2章 以太网 以太网是最早使用的局域网,也是目前使用最广泛的网络产品。 以太网有10Mbps、100Mbps和1000Mbps的网络。以星型为主。交换型以太网 逐渐代替了共享型以太网,并使用了全双工以太网技术。 2.1 概述 1. 20世纪70年代中期,Xerox公司制定了以太网协议并进行实验,速率为2.94Mbps; 2.1980年,Xerox、Intel和DEC三公司联合发表DIX80,即以太网的标准; 3.1981年6月,IE
18、EE802 LAN标准委员会成立; 4.1985年,IEEE802 LAN标准委员会正式通过了局域网标准。 5.传统的以太网的核心思想是在共享的公共传输媒体上以半双工传输模式工作,网络的站点在同一 时刻要么发送数据,要么接收数据,而不能同发送和接收。 6.交换型和全双工以太网的出现,实现了站点独占传输媒体并同时收发数据。 2.2 以太网标准系列 年份代号标准类型 198210BASE58023粗同轴电缆 198510BASE28023a细同轴电缆 199010BASET8023I双绞线 199310BASEF8023j光纤 1995100BASET8023u双绞线 1997全双工以太网8023
19、x双绞线、光纤 19981000BASEX8023z短屏蔽双绞线、光纤 20001000BASET8023ab双绞线 2.3 以太网的功能模块 2.4 帧结构 2.4.1 以太网的帧结构 7 1 6 6 2 461500 4 前导码帧首定界符(SFD)目的地址(DA)源地址(SA)类型 (TYPE)数据区(DATA)帧检验序列(FCS) 1.前导码 为101010。,共56位,为了同步。 2.帧首定界符(SFD) 为10101011,表示一帧开始。 3.目的地址(DA) 为MAC的物理地址,共6字节。又分为单地址、多地址和广播地址。 (1)单地址:最高位是“0”; (2)多地址和广播地址:最高
20、位是“1”。(广播地址时,DA同时为全“1”代码) 4.源地址(SA) 同上 5.类型(TYPE) 主要说明高层所使用的协议类型,如IP地址。 6.数据区(DATA) 它的范围为:461500字节,如不够46字节,则必须填充到46字节。 7.帧检验序列(FCS) FCS是通过计算除前导码、SFD和FCS以外的内容得到的。 2.4.2 以太网与IEEE802.3(CSMA/CD标准)帧结构的比较 7 1 6 6 2 461500 4 前导码帧首定界符(SFD)目的地址(DA)源地址(SA)类型 (TYPE)数据区(DATA)帧检验序列(FCS) 以太网帧结构 7 1 2/6 2/ 6 2 461
21、500 046 4 前导码帧首定界符(SFD)目的地址(DA)源地址(SA)长度(L) 逻辑链路层协议单元LLCPDU填充字段 PAD帧检验序列(FCS) IEEE802.3(CSMA/CD标准)帧结构 说明:如果LLCPDU46字节,则发送站的MAC子层自动填“0”代码于填充段PAD中。 以太网与IEEE802.3的区别: 比较以太网IEEE802.3 数据段直接为网络层的分组为LLCPDU 长度/类型类型(值大于1536D)长度(值小于1536D) 以太网帧IEEE802.3帧 DA段在最高位有意义:区分单址还是多址在最高两位有意义次高位“0”:全 局管理次高位“1”:局部管理 广播地址D
22、A段,次高位“1”DA段,次高位“1” 2.5 媒体访问控制技术 1.发送规则 2.碰撞槽时间(重点讲解) 假设公共总线媒体长度为S,帧在媒体上的传播速度为0.7C(光速),网络的传输率为R(bps), 帧长为L(bps),tPHY为某站的物理层时延; 则有: 碰撞槽时间=2S/0.7C+2tPHY 因为Lmin/R=碰撞槽时间 所以:Lmin =(2S/0.7C+2tPHY )R (注意,原书中有错!) Lmin 称为最小帧长度。 碰撞槽时间在以太网中是一个极为重要的参数,有如下特点: (1)它是检测一次碰撞所需的最长时间。 (2)要求帧长度有个下限。(即最短帧长) (3)产生碰撞,就会出现
23、帧碎片。 (4)如发生碰撞,要等待一定的时间。t=rT。(T为碰撞槽时间)酽锕极額閉镇桧猪訣锥。3. 接收规则 (1)网络上的站点,如不发送,则接收; (2)接收后,首先判断是否为帧碎片; (3)识别目的地址; (4)判断FCS是否有效,若无效,丢弃;若有效,进行(5)步; (5)确定长度字段时长度还是类型,以0600H为界; (6)接收成功。解封后送到LLC层。 2.6 选学内容 2.6.1 以太网时隙(slot time) 1.为什么要设置时隙? (1)在以太网规则中,若发生冲突,则必须让网上每个主机都检测到。但信号传播到整个介质需 要一定的时间。 (2)考虑极限情况,主机发送的帧很小,两
24、冲突主机相距很远。在A发送的帧传播到B的前一刻, B开始发送帧。这样,当A的帧到达B时,B检测到了冲突,于是发送阻塞信号。 (3)但B的阻塞信号还没有传输到A,A的帧已发送完毕,那么A就检测不到冲突,而误认为已发送 成功,不再发送。 (4)由于信号的传播时延,检测到冲突需要一定的时间,所以发送的帧必须有一定的长度。这就 是时隙需要解决的问题。 2.下面我们来估计在最坏情况下,检测到冲突所需的时间 (1)在上图中,A和B是网上相距最远的两个主机,设信号在A和B之间传播时延为,假定A在t时 刻开始发送一帧,则这个帧在t+时刻到达B,若B在t+时刻开始发送一帧,则B在t+时就 会检测到冲突,并发出阻
25、塞信号。 (2)阻塞信号将在t+2时到达A。所以A必须在t+2时仍在发送才可以检测到冲突,所以一帧的 发送时间必须大于2。 (3)按照标准,10Mbps以太网采用中继器时,连接最大长度为2500米,最多经过4个中继器,因 此规定对于10Mbps以太网规定一帧的最小发送时间必须为51.2s。 (3)51.2s也就是512位数据在10Mbps以太网速率下的传播时间,常称为512位时。这个时间定 义为以太网时隙。512位时=64字节,因此以太网帧的最小长度为512位时=64字节。 3.冲突发生的时段 (1)冲突只能发生在主机发送帧的最初一段时间,即512位时=64字节的时段。 (2)当网上所有主机都
26、检测到冲突后,就会停发帧。 (3)512位时是主机捕获信道的时间,如果某主机发送一个帧的512位时,而没有发生冲突,以后 也就不会再发生冲突了,称此为主机捕获了信道。 4.中继器与网桥和冲突的关系 (1)中继器和冲突的关系: 中继器不能隔离冲突,所以把中继器相连的网段作为一个冲突域。 冲突退避算法限制了每个主机的退避时间从1个时隙到最多210=1024个时隙,因此, 由中继器连接的多段以太网中,主机数一般不超过1024个。 (2)网桥和冲突的关系: 网桥能隔离冲突,因此,在主机数超过1024个时,可以通过网桥连接。 5.100Mbps和1000Mbps以太网的时隙 (1)100Mbps以太网的
27、时隙: 100Mbps以太网的时隙仍为512位时,以太网规定一帧的最小发送时间必须为5.12s。 (2)1000Mbps以太网的时隙 1000Mbps以太网的时隙增至512字节,即4096位时。 6.坚持退避算法 有三种CSMA坚持退避算法,如下图: (1)非坚持CSMA; #假如介质是空闲的,则发送; #假如介质是忙的,等待一段随机时间,重复第一步; (2)1-坚持CSMA; #假如介质是空闲的,则发送; #假如介质是忙的,继续监听,直到介质空闲,立即发送; #假如冲突发生,则等待一段随机时间,重复第一步。 (3)P-坚持CSMA; #假如介质是空闲的,则以P概率发送;而以(1-P)的概率延
28、迟一个时间单位。时间单位等于最大的传播延迟时间。 #假如介质是忙的,继续监听,直到介质空闲,重复第一步。 #假如发送被延迟一个时间单位,则重复第一步。 7.三种方法的比较: 非坚持1-坚持P-坚持 优点当站点要发送时,只要介质空闲,就立即发送。降低1-坚持的冲突概 率,又减小介质浪费。 缺点即使有几个站有数据要发送,介质仍可能处于空闲状态。介质利用率低。 假如有两个或两个以上的站点有数据要发送,冲突就不可避免。P值的选择 非常重要。彈贸摄尔霁毙攬砖卤庑。2.6.2 载波监听多路介质访问/冲突检测(CSMA/CD) 载波监听多路介质访问/冲突检测协议已广泛应用于局域网。其方法是: 每个站在发送帧
29、期间,同时有检测冲突的能力,一旦检测到冲突,就立即停止发送,并向总线上 发送一串阻塞信号,通知总线上各站冲突已发生,这样通道的容量不致因白白传送一损坏的帧而 浪费。 2.6.3 退避算法 在CSMA/CD算法中,在检测到冲突并发完阻塞信号后,为降低再冲突的概率,需等待一个随机过 程,然后再用CSMA算法发送。为了决定这个随机时间,采用称为二进制指数退避算法,算法如 下: (1)对每个帧,当第一次发生冲突时,设置参量为L=2; (2)退避间隔取1L个时间片中的一个随机数,1个时间片等于2a(双向传播时间=2a, 即:a=0.5); (3)当帧重复一次冲突时,则将参量L加倍; (4)设置一个最大重
30、传次数,超过这个次数,则不再重传,并报告出错。 2.7 物理层结构功能 2.7.1 编码和译码技术 计算机直接输出的码为不归零码(NRZ),在以太网的物理层媒体上传输帧的二进制码必须采用特 殊的编码。 在10BASEX上采用曼彻斯特码。优点为: (1)传输的代码中包括了同步时钟; (2)能很方便的检测到发生碰撞的现象,平均电平发生了变化。 (3)容易区分“1”、“0“。 2.7.2 收发器 #向媒体发送信号 #从媒体接收信号 #识别媒体是否存在信号(在总线上是否有载波) #识别碰撞(在总线上是否发生了碰撞) 四种10BASE以太网物理连接(P.28) 2.7.3 四种10BASE以太网物理性能
31、比较 四种10BASE以太网物理性能比较 10BASE510BASE210BASET10BASEFL 收发器外置设备内置芯片内置芯片内置芯片 媒体10,50同轴电缆5,50同轴电缆3、4、5类不屏蔽双绞线625/125 多模光缆 最长媒体段500m185m100m2km 拓扑结构公共总线型公共总线型星型星型 中继器/集线器中继器中继器集线器集线器 最大跨距/媒体段数25km/5925m/5500m/54km/2 网卡上连接端9芯D型AUIBNC,T头RJ45ST 2.8 10BASET以太网组网技术 2.8.1 10BASET以太网系统组成(P.30) (1)双绞线连接 (2)系统配置 HUB
32、与网卡之间最长距离为100米,HUB数量最多为四个。任意两站之间的距离不会超过500米。 (3)抗干扰能力(P.31) 正常情况:放大器有输入时,在输出双绞线分别产生极性相反且幅度相等的差分信号,对于接收 放大器,只有在差分信号输入时,才有输出; 干扰时:会产生同极性且幅度相等的信号,此时,没有输出。 起到了抗干扰作用。 2.8.2 10BASET集线器功能 (1)媒体上信号的再生和在定时 (2)检测碰撞 (3)端口的扩展功能 (4)混合连接10BASE5与10BASET及10BASE2以太网系统 见P.33。 4B/5B码: 16进制数4位2进制数4B/5B码16进制数4位2进制数4B/5B
33、码 00000111108100010010 10001010019100110011 200101010010101010110 300111010111101110111 401000101012110011010 501010101113110111011 601100111014111011100 701110111115111111101謀荞抟箧飆鐸怼类蒋薔。“局域网技术与组网工程”课堂笔记三高速以太网是当前最流行、并广泛使用的局域网,包括100Mbps和1000Mbps局域网。 3.1 概述 高速以太网是在10BASET和10BASEFL(光纤链路)技术基础上发展起来的100Mbp
34、s传输速率的以太 网,现广泛使用100BASETX和10BASEFX,它们的拓扑结构与10BASET和10BASEFL相同,并向下兼 容。 10/100Mbps自适应局域网保证了从10Mbps向100Mbps平稳过渡。 3.2 高速以太网体系结构与分类 1.体系结构 MII:媒体独立接口 2.四种不同的100Mbps以太网物理层结构(P.35) 3.3 高速以太网系统的组成 1.网卡与集线器的连接 (1)若网卡上内置收发机,则用RJ45连接器连接; (2)若网卡上外置收发机,则在网卡上配置一个40芯MII连接器。 以上对双绞线和光缆均一样。安装在站中的网卡也是一样的。 2.媒体 注意: (1)
35、网卡或者外置收发器上必须配置9芯连接器,这和10Mbps以太网不同。 (2)屏蔽双绞线的阻抗为150。 (3)在全双工情况下: ?单摸光缆段可达40Km; ?多摸光缆段可达2Km; 3.线器 (1)分类 按结构划分:共享型和交换型; 按媒体划分:双绞线和光缆; 按设备划分:单台非扩展型、叠堆型和厢体型。 3.4 高速以太网组网技术 3.4.1 高速以太网系统的跨距 1.速以太网碰撞时间槽(St) St=2S/0.7C+2tPHY 考虑中继器的时延tr,并考虑中继器的个数为N,则有: St=2S/0.7C+2N tr +2tPHY 所以:S=0.35(L/R-2N tr -2tPHY ) 注意,
36、L没有变,但R比10Mbps大了10倍。所以S小了许多。 2.跨距 跨距实际上反映了一个碰撞域,具体值见P.39。 3.4.2 自动协商与10M/100Mbps自适应功能 1.自动协商功能 (1)在使用双绞线的环境中,网卡和集线器的端口RJ45可支持多种工作模式,如:100Mbps的 T2、Tx,也支持双工方式。 (2)屏蔽双绞线及光缆不支持自动协商功能; (3)在加电后,首先在端口上进行自动协商,协商结果,获得双方拥有的最佳工作模式。 (4)发送快速链路脉冲(FLP),一旦协商成功,就不再发快速链路脉冲(FLP)。 (5)10M/100Mbps自适应功能 分几种情况进行分析: (1)原有的1
37、0BASET具有自动协商功能,得到协商结果。 (2)原有的10BASET不具有自动协商功能,由于在以往的10BASET系统中,媒体链路正常工作时, 始终存在正常链路脉冲(NLP),以检测链路的完整性。因此可以适应。 (3)如果老的10BASET中使用3类UTP媒体,在新系统中则不能正常使用。 (4)在自动协商后,各端口的速率可能不同。 注意两种不正常的情况: (1)如果是3类屏蔽线,在10Mbps时正常,在100Mbps就可能不正常; (2)如果集线器各端口上的速率不同,那么必须解决传输率不一致的问题,否则,系统不能正常 运行。 3.4.3 高速以太网与10BASET/FL组网性能比较 10B
38、ASET/FL100BASETX/FX IEEE标准8023i/j8023u 拓扑结构星型星型 传输率10Mbps100Mbps 媒体3、4、5类UTP、MMF5类UTP、STP、SMF、MMF 最长媒体段UTP:100m;MMF:2KmUTP、STP:100m;MMF:2Km;SMF:40Km 编码:曼彻斯特码4B/5BNRZI 帧结构符合DIX802。3标准符合DIX、802。3标准 CSMA/CD同上同上 碰撞槽时间512s(512bit)512s(512bit) 碰撞域范围UTP:500m(四个中继器)2个中继器:UTP、STP:205m;MMF:228m; UTP+MMF:216m;
39、无中继器:UTP:100m;MMF:412m厦礴恳蹒骈時盡继價骚。3.4.4 高速以太网典型组网方案 S交换机 3.5 千兆位以太网体系结构与分类 3.5.1 千兆位以太网体系结构和功能模块 1.体系结构 2.功能模块 PHY层中包括了: (1)编码/译码; (2)收发器; ?包括长波光纤激光传输器;波长:1270nm1355nm ?短波光纤激光传输器;波长:770nm860nm ?铜缆收发器。 (3)媒体。 3.5.2 千兆位以太网按PHY层分类 1.1000BASEX类 (1)1000BASECX ?1000BASECX是一种短距离屏蔽铜缆,最长距离为25m。 ?连接器为9芯。但只用了四芯
40、,1、5、6、9 ?该缆的特性阻抗为150。 (2)1000BASELX ?使用长波激光,可驱动单模光纤,也可驱动多模光纤 ?对于多模:最长距离为550m; ?对于单摸:全双工模式下,最长距离为3Km。 (3)1000BASESX ?仅支持多模光纤。 波长工作方式最长距离 625m全双工300m 50m全双工525m 2.1000BASET(双绞线) ?最长距离:100m; ?需要专门的、更先进的编码/译码方案。 ?特殊的驱动电路方案。 3.6 千兆位以太网组网技术 3.6.1 千兆位以太网组网跨距 1.无中继器连接(P.46) 2.有中继器连接 3.6.2 帧扩展技术 最小帧长度越长,则半双
41、工模式的网络系统跨距越大。 1.各种速率下的位长: 速率10Mbps100Mbps1000Mbps 位长512比特512比特512字节(4096比特) 当千兆以太网的帧达不到512字节时,必须添加扩展位。 2.100Mbps和1000Mbps以太网的时隙 (1)100Mbps以太网的时隙: 100Mbps以太网的时隙仍为512位时,以太网规定一帧的最小发送时间必须为5.12s。 (2)1000Mbps以太网的时隙 1000Mbps以太网的时隙增至512字节,即4096位时。 3.6.3 帧突发技术 帧突发在千兆以太网上是一种可选功能,它使一个站或一个服务器一次能连续发送多个帧。 1.帧突发技术
42、: (1)当一个站点需要发送很多短帧时,该站点先试图发送第一帧,该帧可能是附加了扩展位的 帧; (2)一旦第一个帧发送成功,则具有帧突发功能的该站就能够继续发送其它帧,直到帧突发的总 长度达到1500字节为止。 (3)为了使得在帧突发过程中,媒体始终处于“忙状态”,必须在帧间的间隙时间中,发送站发 送非“0”、“1”数值符号,以避免其它站点在帧间隙时间中占领媒体而中断本站的帧突发过 程。 (4)在帧突发过程中只有第一个帧在试图发出时可能会遇到媒体忙或产生碰撞,在第一个帧以后 的成组帧的发送过程中再也不可能产生碰撞。 (5)如果第一帧恰恰是一个最长帧,即1518字节,则标准规定帧突发过程的总长度
43、限制在3000字 节范围内。茕桢广鳓鯡选块网羈泪。第4章 交换型以太网 本章首先介绍以太网从共享型到交换型的变迁,并介绍交换型以太网的特点和以太网交换器的工作 原理。然后比较详细地介绍以太网交换器的结构、交换方式、分类和典型应用。 4.1 概述 1.共享型以太网: (1)由网卡、集线器/中继器、媒体三部分组成。整个系统的带宽只有10Mbps,处在一个冲突域 范围。 (2)假设某系统共有n=20个节点,那么每个节点的带宽则为:10Mbps/20=0.5Mbps。 (3)共享型以太网存在的问题是: ?受到CSMA/CD的约束,一个碰撞域的带宽是固定的; ?在一个碰撞域的系统中,每个节点的带宽为:系
44、统带宽/n;(n为节点数) ?在一个碰撞域的系统中,可以是一个工作组,也可是多个工作组; ?在多个工作组的碰撞域中,每个工作组的数据流广播到系统中所有的站,安全性不 好。 ?覆盖范围受到限制。 2.交换型以太网: 可解决共享型以太网的不足。 4.2 交换型以太网系统的特点 4.2.1 系统的特点 交换型以太网系统中的交换型集线器,也称以太网交换器,以其为核心连接站点或者网段。 交换型以太网系统的优点 (1)每个端口可以连接网段,也可连接站点。每个端口独享10Mbps的带宽; (2)系统的最大带宽可达到端口带宽的n倍; (3)交换器连接了多个网段,网段上运作都是独立的,被隔离的。但如果需要的话,
45、独立网段之 间通过其端口也可建立暂时的数据通道。 (4)被交换器隔离的独立网段上数据信息流不会随意广播到其它端口上去。 4.2.2 以太网交换器工作的逻辑机理 特点: (1)交换器上可同时多个数据通道并存; (2)端口间既隔离又连接; (3)上图中共有30个数据通道,如果采用双工的方式,同时最多可通15个数据通道; (4)从上图可看到,各端口信息流是被隔离的,如果要连通,必须进行控制,方可交互。 4.3 以太网交换器的结构 共有四种不同的结构: 1.软件执行交换结构 2.矩阵交换结构 3.总线交换结构 4.共享存储器交换结构 4.3.1 软件执行交换结构 4.3.2 矩阵交换结构 特点 (1)地址表:地址输入/输出端口 (2)利用硬件交换,结构紧凑,交换速度快,时延小; (3)不易于简单堆叠和集成。 (4)使用广泛,如:ATM。 注意: (1)当输入端口与输出端口相等时,不会发生阻塞; (2)当输入端口多于输出端口时,就会发生阻塞; (3)为避免帧的丢失,必须增加缓冲区。 4