收藏 分销(赏)

中考数学试题分类汇编应用技术题.doc

上传人:快乐****生活 文档编号:2183464 上传时间:2024-05-22 格式:DOC 页数:6 大小:89.50KB 下载积分:6 金币
下载 相关 举报
中考数学试题分类汇编应用技术题.doc_第1页
第1页 / 共6页
中考数学试题分类汇编应用技术题.doc_第2页
第2页 / 共6页


点击查看更多>>
资源描述
2009年中考数学试题分类汇编——应用题 (河南)l9.(9分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升. (1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式; (2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由. (河南)20.(9分)如图所示,电工李师傅借助梯子安装天花板上距地面2 .90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78°.李师傅的身高为l.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便? (参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.) (河南)22. (10分)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家电的进价和售价如下表所示: (1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案? (2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下. 如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元? (安徽)7.某市2008年国内生产总值(GDP)比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是…………………………【 】 A. B. C. D. (安徽)23.已知某种水果的批发单价与批发量的函数关系如图(1)所示. 金额w(元) O 批发量m(kg) 300 200 100 20 40 60 (1)请说明图中①、②两段函数图象的实际意义. 【解】 O 60 20 4 批发单价(元) 5 批发量(kg) ① ② 第23题图(1) O 6 2 40 日最高销量(kg) 80 零售价(元) 第23题图(2) 4 8 (6,80) (7,40) (2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的 函数关系式;在下图的坐标系中画出该函数图象;指出金额在什 么范围内,以同样的资金可以批发到较多数量的该种水果. 【解】 (3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函 数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果, 且当日零售价不变,请你帮助该经销商设计进货和销售的方案, 使得当日获得的利润最大. 【解】 (北京)18.列方程或方程组解应用题: 北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次? (恩施州)22.某超市经销A、B两种商品,A种商品每件进价20元,售价30元;B种商品每件进价35元,售价48元. (1)该超市准备用800元去购进A、B两种商品若干件,怎样购进才能使超市经销这两种商品所获利润最大(其中B种商品不少于7件)? (2)在“五·一”期间,该商场对A、B两种商品进行如下优惠促销活动: 打折前一次性购物总金额 优惠措施 不超过300元 不优惠 超过300元且不超过400元 售价打八折 超过400元 售价打七折 促销活动期间小颖去该超市购买A种商品,小华去该超市购买B种商品,分别付款210元与268.8元. 促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元? (广州市)23. (本小题满分12分) 为了拉动内需,广东启动“家电下乡”活动。某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的Ⅰ型和Ⅱ型冰箱的销量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台。 (1)在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台? (2)若Ⅰ型冰箱每台价格是2298元,Ⅱ型冰箱每台价格是1999元,根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问:启动活动后的第一个月销售给农户的1228台Ⅰ型冰箱和Ⅱ型冰箱,政府共补贴了多少元(结果保留2个有效数字)? (广东省)16. 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台? 36 4月 20 40 O (台) 12月 (第24题图) (湖北荆州)24.(10分)由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖.某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为0.1万元/台,并预付了5万元押金。他计划一年内要达到一定的销售量,且完成此销售量所用的进货总金额加上押金控制在不低于34万元,但不高于40万元.若一年内该产品的售价(万元/台)与月次(且为整数)满足关系是式:,一年后发现实际每月的销售量(台)与月次之间存在如图所示的变化趋势. ⑴ 直接写出实际每月的销售量(台)与月次之间 的函数关系式; ⑵ 求前三个月中每月的实际销售利润(万元)与月 次之间的函数关系式; ⑶ 试判断全年哪一个月的的售价最高,并指出最高售价; ⑷ 请通过计算说明他这一年是否完成了年初计划的销售量. (湖北黄冈)19.(满分11分)新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线的一部分,且点A,B,C的横坐标分别为4,10,12 (1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式; (2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程); (3)前12个月中,第几个月该公司所获得的利润最多?最多利润是多少万元? (湖南长沙)23.(本题满分8分) 某中学拟组织九年级师生去韶山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话: 李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.” 小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5000元.” 小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.” 根据以上对话,解答下列问题: (1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元? (2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元? (湖南长沙)25.(本题满分10分) 为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量(万件)与销售单价(元)之间的函数关系如图所示. (1)求月销售量(万件)与销售单价(元)之间的函数关系式; (2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人? (3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款? 4 2 1 40 60 80 x (元) (万件) y O (湖南省株洲市)20.(本题满分10分)初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知:在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分每份可得0.2元. (1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份. (2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内. (广东东营)21. (本题满分9分) 为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%. (1)求2007年同期试点产品类家电销售量为多少万台(部)? (2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元? (山西太原) 23.(本小题满分6分) 某公司计划生产甲、乙两种产品共20件,其总产值(万元)满足:1150<<1200,相关数据如下表.为此,公司应怎样设计这两种产品的生产方案. 产品名称 每件产品的产值(万元) 甲 45 乙 75 (山西太原)28.(本小题满分9分) 、两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往城,乙车驶往城,甲车在行驶过程中速度始终不变.甲车距城高速公路入口处的距离(千米)与行驶时间(时)之间的关系如图. (1)求关于的表达式; (2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为(千米).请直接写出关于的表达式; 1 2 33 43 53 60 120 180 240 300 360 O /千米 /时 (3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度.在下图中画出乙车离开城高速公路入口处的距离(千米)与行驶时间(时)之间的函数图象. (陕西) 21.(本题满分8分) 在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发(h)时,汽车与甲地的距离为(km),与的函数关系如图所示. 根据图象信息,解答下列问题: (1)这辆汽车的往、返速度是否相同?请说明理由; 2 2.5 5 (第21题图) 120 O y/km x/h (2)求返程中与之间的函数表达式; (3)求这辆汽车从甲地出发4h时与甲地的距离. (四川凉山)19.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元) (山东潍坊)18.(本小题满分8分) 某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择: 方案一:从纸箱厂定制购买,每个纸箱价格为4元; 方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元. (1)若需要这种规格的纸箱个,请分别写出从纸箱厂购买纸箱的费用(元)和蔬菜加工厂自己加工制作纸箱的费用(元)关于(个)的函数关系式; (2)假设你是决策者,你认为应该选择哪种方案?并说明理由. (鄂州市) 每吨土特产获利(百元) 12 16 10 26、某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售。按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息, 解答以下问题 (1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式. (2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案。 (3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值。 (哈尔滨)21.(本题5分) 张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三 边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形 ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米. (1)求S与x之间的函数关系式(不要求写出自变量x的取值范围) (2)当x为何值时,S有最大值?并求出最大值. (参考公式:二次函数y=ax2+bx+c(a≠0),当x=-时,y最大(小)值=) (哈尔滨)26.(本题8分) 跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同. (1)求每个甲种零件、每个乙种零件的进价分别为多少元? (2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来. (孝感)20.(本题满分8分) 三个牧童A、B、C在一块正方形的牧场上看守一群牛,为保证公平合理,他们商量将牧场划分为三块分别看守,划分的原则是:①每个人看守的牧场面积相等;②在每个区域内,各选定一个看守点,并保证在有情况时他们所需走的最大距离(看守点到本区域内最远处的距离)相等.按照这一原则,他们先设计了一种如图1的划分方案:把正方形牧场分成三块相等的矩形,大家分头守在这三个矩形的中心(对角线交点),看守自己的一块牧场. 过了一段时间,牧童B和牧童C又分别提出了新的划分方案. 牧童B的划分方案如图2:三块矩形的面积相等,牧童的位置在三个小矩形的中心. 牧童C的划分方案如图3:把正方形的牧场分成三块矩形,牧童的位置在三个小矩形的中心,并保证在有情况时三个人所需走的最大距离相等. 请回答: (1)牧童B的划分方案中,牧童 ▲ (填A、B或C)在有情况时所需走的最大距离较远;(3分) (2)牧童C的划分方案是否符合他们商量的划分原则?为什么?(提示:在计算时可取正方形边长为2)(5分) 6 / 6
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服