1、3.5直线与圆的位置关系一、教学课程 九年制义务教育九年级数学(北师大版)下册第三章第五节“直线和圆的位置关系”。二、学习方式:本节是探索直线与圆的位置关系,课本通过操作、观察直线与圆的相对运动,提示直线与圆的三种位置关系,探索直线与圆的位置关系,和圆心到直线的距离与半径之间的大小关系的联系,并突出研究了圆的切线的性质和判定。在本节的设计中,充分体现了学生已有经验的作用,用运动的观点研究直线与圆的位置关系,使学生明确图形在运动变化中的特点和规律。三、学生任务分析:充分利用教科书提供的素材和活动。鼓励学生从事观察、测量、折叠、平移、旋转、推理证明等活动,帮助学生有意识地积累活动经验,获得成功的体
2、验。教学中应鼓励学生动手、动口、动脑和交流,充分展示“观察、操作猜想、探索说理(有条理地表达)”的过程,使学生能在直观的基础上学习说理,体现合情推理和演绎推理的融合,促进学生形成科学地、能动地认识世界的良好品质。四、学生的认识起点分析:学生已具备的观察问题和分析问题的能力,学生通过前面的学习,如对称、平移、旋转、说理等方式认识了许多图形的性质,积累了一定的数学活动经验。特别是点与圆的位置关系为这节课打下了坚实基础。五、教学目标:(1)经历探索直线和圆的位置关系的过程(2)理解直线与圆的三种位置关系相交、相切、相离(3)探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。
3、六、教学重点:直线与圆的三种位置关系相交、相切、相离从设置情景提出问题,到动手操作、交流,直至归纳得出结论,整个过程学生不仅得到了直线与圆的位置关系,更重要的是经历了知识过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学、应用数学。七、教学难点:探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。八、教学过程:教学步骤教 师 活 动学 生 活 动教学方式复习过渡引入新知点与圆有哪几种位置关系?设O的半径为r,点P到圆心的距离为d,如何用d与r之间的数量关系表示点P与O的位置关系? 在教师引导下回忆前面知识,为探究新知识作好准备。由学生归纳总
4、结创设情景欣赏海上日出图片,感受生活中反映直线与圆的位置关系的现象。(把太阳看作圆,地平线看作直线,观察图片得出圆和直线的三种位置关系)议一议:学生分小组进行讨论,可从直线与圆交点的个数考虑,1个交点,2个交点,没有交点。学生分组讨论,师生互动合作探索活动对学生分类中出现的问题予以纠正,对学生提出解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。按照公共点的个数,进行分类(分三类):直线与圆有两个公共点时叫做直线与圆相交;直线与圆有唯一公共点时叫做直线与圆相切,这条直线叫做圆的切线,这个公共点叫做切点;直线与圆没有公共点时叫做直线与圆相离。引导学生除了观察交点外还
5、可以根据圆心到直线的距离来去判断直线和圆的位置关系。 根据学生讨论的结果,教师板书,如果O的半径为r,圆心O到直线的距离为d,那么:直线l与相交O dr直线l与相切O d=r直线l与相离O dr归纳:判断直线和圆的位置关系有两种方法,1、从公共点的个数来判断;2、从圆心到直线的距离来判断活动一 操作、思考第一层次:动手操作,并在操作中感受直线与圆的位置关系的变化。(1)直线与圆的公共点的个数有变化。(2)圆心到直线的距离有变化。第二层次:通过操作活动引导学生归纳直线与圆的三种位置关系。活动二 探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。第一层次:观察垂足与O的三
6、种位置关系,使学生体会到:这三种位置关系分别同直线与圆的三种位置关系对应。第二层次:探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。经过对各种情况的分析、归纳、总结,对学生渗透分类讨论的数学思想。例题教学例 在ABC中,A=45,AC=4,以C为圆心, r为半径的圆与直线AB有怎样的位置关系?为什么?(1)r= ,(2)r=2 ,(3)r=3关于直线与圆的位置关系,不仅要理解它的判定方法,还应掌握如何运用该判定方法判断直线与圆有怎样的位置关系。引导学生对问题进行分析:要判定直线AB与C的位置关系,就要比较圆心C到直线AB的距离,与C的半径的大小,因此,要作出点C到直
7、线AB的垂线段CD,由CD与C半径之间的数量关系,并可以判定,直线AB与C的位置关系检测学生对知识掌握情况及应用能力。再次渗透分类的数学思想,体会分析的方法,积累数学活动的经验。巩固运用及其推广由上面的结论可知:判定直线和圆的位置关系,可转化为求圆心与该直线的距离和半径的大小来判定。直线与圆有唯一的公共点,()判断直线和圆的位置关系?()直线与直线是不是一定垂直?为什么?鼓励学生自己举出实例,体验数学在生活中的应用。鼓励学生自己解决这个问题,让学生自己发现圆的切线性质。反思小结提炼规律教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。学生在教师引导下回顾
8、反思,归纳整理。九、教学反思:(1)关于直线与圆相切的定义,必须强调“有唯一公共点”,并使学生体会到:只有当直线与圆有相切关系时,才把直线叫做圆的切线,并把它们的公共点叫做切点,避免在说明直线与圆相切时,首先承认“切点”的错误。(2)在研究利用圆心到直线的距离d与半径r之间的数量关系判定直线与圆的位置关系时,应注意启发、引导类比“点与圆的位置关系”,进而将直线位置关系转化为点(圆心到直线的垂线段的垂足)与圆的位置关系。(3)对直线与圆的位置关系,要使学生体会到:直线与圆的位置关系转化为点到直线的距离与半径之间的数量关系;反过来,也可能通过点到直线的距离与半径之间的数量关系判定直线与圆的位置关系。 由形的关系决定数量关系,由数量关系判断形的关系,反映图形与数量之间的关系。这的数形结合,既是重要的知识内容,又是重要的思想方法。