资源描述
TiO2纳米管论文:改性TiO_2纳米管光电极制备及可见光下光电催化性能研究
———————————————————————————————— 作者:
———————————————————————————————— 日期:
11
个人收集整理 勿做商业用途
TiO2纳米管论文:改性TiO_2纳米管光电极制备及可见光下光电催化性能研究
【中文摘要】TiO2催化剂由于其成本低、无毒、活性高、无二次污染等优点在环境保护领域被广泛应用于去除难降解有机物。然而,其存在禁带宽度过大(3.2 eV)等缺陷,限制了其在污染治理中的应用。通过对TiO2进行过渡金属离子掺杂能够有效减小其禁带宽度,拓宽光谱响应范围。作为内分泌干扰物的一种,壬基酚广泛存在于洗涤剂、纺织、造纸等工业生产中,它能够长期存在于自然界中,很难被生物降解,其降解一直是国内外研究的热点和难点。本文采用阳极氧化法制备了TiO2纳米管光电极,通过电沉积对其进行W掺杂改性,拓宽了其光谱响应范围,研究了W/TNT光电极对壬基酚的光电催化降解效果。采用阳极氧化法制备了TiO2纳米管(TNT)光电极。考察了制备电压、时间、煅烧温度等条件对TNT阵列的表面形貌和结构的影响,利用扫描电子显微镜(SEM)、X射线衍射(XRD)、能量散射X射线能谱(EDX)等手段对光电极进行了表征。以罗丹明B为目标污染物,考察了不同制备条件对TNT光电极在可见光下的光催化性能的影响。结果表明,通过调节阳极氧化过程中的参数可以实现对不同尺寸和结构的TNT光电极的可控制备。采用电化学沉积的方法,以TNT阵列光电极为基体,制备了W掺杂的TiO2纳米管阵列光电极。优化了W/TNT光电极的最佳掺杂条件,考察了W/TNT光电极的光催化性能.结果表明,光电极的最佳制备条件为:沉积电压为3V、电极间距为1cm、沉积液(NH4)2WO4浓度为1。0g/L、沉积时间为10min、煅烧处理温度为550℃.W/TNT光电极的表征结果显示W的掺杂会抑制锐钛矿相TiO2晶粒的生长以及晶相转变过程;XPS图谱分析表明W元素通过掺杂进入到了TiO2晶格内部形成W—Ti—O键;WTNT光电极对可见光的光谱响应范围发生红移;改性与未改性TiO2纳米管光电极对罗丹明B的降解效果表明,相对于未掺杂的TNT光电极,W/TNT光电极对罗丹明B的降解效果更优,掺杂后的光电极具有更佳的光(电)催化活性.采用W/TNT光电极在可见光下对内分泌干扰物壬基酚进行光电催化降解,考察了壬基酚光电催化降解过程中的影响因素,研究了该过程中壬基酚的矿化过程.结果表明,pH值在中性条件下,光电极对壬基酚的光电催化降解效果最佳;随着反应中壬基酚初始浓度增加,W/TNT光电极对壬基酚的降解效率逐渐下降;随着外加偏压的增加,壬基酚的光电催化降解效率逐渐增大,而外加偏压高于2。0V时,进一步增加电压反而不利于壬基酚的降解;催化剂面积的增大,有利于光电极对壬基酚光电催化降解效果的提高。在壬基酚光电催化反应过程中,壬基酚分子在·OH的作用下经过一系列反应转化为中间产物,而不是被完全矿化成CO2和H2O。
【英文摘要】Titanium dioxide (TiO2) has been widely utilized in the environmental protection as the photocatalyst for the degradation of organic pollutants due to its low cost, non—toxicity, excellent stability and without secondary pollution.However, the wide band gap energy of TiO2 catalyst (3。2 eV) limits this photocatalyst’s application in the process of environmental protection。 Photoelectrode doping could effectly decrease the band gap energy of TiO2 by doping with transition metal elements, which could extend the response of TiO2 to visible light.As one of the typical Environmental Endocrine Disruptors (EEDs), Nonyl Phenol (NP), has attracted great attention owing to their widely used in the manufactures of detergent, textile and papermaking, which are long—standing and bio—refractory organic compounds. It is of significant importance to develop new treatment technologies for the degradation of NP in the environment。In this work, the TiO2 nanotube(TNT) photoelectrodes were prepared by means of anodic oxidation. W doped TNT photoelectrodes were fabricated via electrochemical deposition, which could extend the response of TiO2 photocatalyst to visible light. The present work also studied the degradation of endocrine disrupting chemicals NP using W/TNT photoelectrodes。TNT photoelectrodes were prepared by means of anodic oxidation process with post-calcination. The effect of anodization conditions including anodic voltage, anodic time and clacination temperature on the morphology and crystal structure of photoelectrodes were studied。 Scanning electronic microscopy (SEM), X—ray diffraction (XRD) and Energy dispersive X-ray detector (EDX) were used to characterize the morphology and crystal structure of photoelectrodes.Photocatalytic activity of the TNT photoelectrodes was evaluated in terms of the degradation of NP in aqueous solution。 The effects of the preparation conditions on the photocatalytic activity were investigated in detail. The results indicated that the preparation of TNT electrodes with ideal size and structure were controllable in terms of adjustment of the anodization parameter.The W-doped TNT photoelectrode was prepared on TNT photoelectrode substrate by electro-deposition method. The doping conditions of W/TNT electrodes were optimized. The photocatalytic activity of W/TNT electrodes were evaluated in detail. The results showed that the optimal preparation conditions were deposition voltage 3V, electrode spacing 1cm, (NH4)2WO4 concentration 1.0g/L, deposition time 10min and calcination temperature 550℃.The results of characterization showed that W6+ concentrates on TiO2 crystal lattice, hindering both the crystal growth and anatase to rutile transition。 Meanwhile, the W6+ may be incorporated into the titania lattice and replaced Ti4+ to formW—O—Ti bonds or located at interstitial sites.Significant red-shift in the spectrum of UV—vis absorption was observed。 The degradation of Rhodamine B showed the W/TNT photoelectrodes exhibit excellent photoelectrochemical property and photocatalytic activity under visible light, compared with non-doped TNT photoelectrodes。W-doped TNT photoelectrodes were used for the photoelectrocatalytic(PEC) oxidation of endocrine disrupting chemicals——NP。 The effects of anodic bias potential, initial pH, and initial concentration of NP on the PEC degradation of NP were investigated。 TOC analysis was carried out to evaluate the mineralization of NP on the W/TNT by the PEC treatment。It can be seen that at nearly neutral nature pH, NP shows the highest degradation efficiency。 The result indicates that the degradation efficiency is decreased with increasing the initial concentration of NP. It is observed that the degradation efficiency of NP is increased with increasing the bias potential from 0 to 2.0 V. However, when the potential was further increased to higher than 2.0 V, the PEC degradation rate was reduced. The increase of catalyst area was beneficial to the degradation of NP.In the process of NP degradation, the lower TOC removal efficiency means that many NP molecules are actually degraded to intermediates instead of mineralized to CO2 and H2O。个人收集整理,勿做商业用途文档为个人收集整理,来源于网络
【关键词】TiO2纳米管 金属离子掺杂 光电催化 壬基酚
【英文关键词】TiO2 nanotube Transition metal ion—doping Photoelectrocatalysis Nonyl Phenol
【目录】改性TiO_2纳米管光电极制备及可见光下光电催化性能研究
摘要
4-6
ABSTRACT
6-7
第1章 绪论
11—21
1。1 课题背景及研究的目的和意义
11-12
1。1。1 课题研究背景
11
1。1。2 课题研究的目的及意义
11-12
1.2 TiO_2 纳米管光催化研究进展
12-16
1。2.1 TiO_2 纳米管制备方法
12—15
1。2.2 TiO_2 纳米管在水处理中的应用
15—16
1。2.3 TiO_2 催化剂存在的主要缺陷
16
1.3 TiO_2 催化剂的改性研究现状
16-17
1.3。1 TiO_2 催化剂的改性方法
16-17
1.3。2 改性TiO_2 催化剂在水处理中的应用
17
1。4 内分泌干扰物壬基酚处理技术研究进展
17-19
1。4.1 壬基酚处理技术研究进展
17—19
1.4.2 壬基酚检测手段研究进展
19
1.5 本文的主要研究内容
19-21
第2章 实验材料与方法
21—30
2.1 实验仪器与试剂
21-22
2.1。1 实验仪器
21
2.1。2 实验试剂与材料
21—22
2.2 光电极的制备
22-24
2.2.1 电极的预处理
22-23
2.2。2 二氧化钛纳米管光电极的制备
23-24
2。2.3 改性二氧化钛纳米管光电极的制备
24
2.3 实验方法
24-28
2.3。1 光电催化反应及装置
24—26
2.3.2 罗丹明B 的结构与性质
26
2。3.3 壬基酚的结构与性质
26-28
2.4 样品表征及分析方法
28—30
2。4。1 电极表面形貌分析
28
2.4。2 电极晶型结构分析
28
2.4。3 元素组成及价态分析
28—29
2.4。4 紫外—可见漫反射吸收光谱分析
29
2。4.5 其它分析手段
29—30
第3章 TiO_2纳米管光电极制备及光催化性能研究
30—46
3。1 制备参数对TiO_2 纳米管表面形貌的影响
30-37
3。1.1 阳极氧化电压
30—32
3。1。2 氧化时间
32-34
3。1。3 制备温度
34-35
3。1。4 电解液组成
35—36
3.1。5 煅烧处理温度
36-37
3.2 晶型结构分析
37—39
3。3 能量散射X 射线能谱分析
39
3.4 TiO_2 纳米管光电极光催化性能研究
39—44
3。4。1 阳极氧化电压对TiO_2 纳米管光催化性能的影响
39—40
3。4。2 氧化时间对TiO_2 纳米管光催化性能的影响
40—41
3.4.3 制备温度对TiO_2 纳米管光催化性能的影响
41—42
3。4.4 电解液组成对TiO_2 纳米管光催化性能的影响
42—43
3.4。5 煅烧温度对TiO_2 纳米管光催化性能的影响
43-44
3。5 本章小结
44-46
第4章 W/TiO_2纳米管光电极制备及光催化性能研究
46-62
4。1 W/TiO_2 纳米管光电极制备条件优化
46—51
4。1.1 沉积电压
46—47
4.1.2 电极间距
47—48
4.1。3 沉积液浓度
48—49
4.1。4 沉积时间
49—50
4.1.5 煅烧温度
50-51
4.2 W/TiO_2 纳米管光电极的表征
51—58
4。2.1 表面形貌分析
51-53
4。2.2 能量散射X 射线能谱分析
53-54
4.2。3 晶型结构分析
54-55
4。2.4 表面元素价态分析
55—57
4。2.5 光吸收性能分析
57—58
4。3 W/TiO_2 纳米管光电极在可见光下光电催化性能研究
58—60
4。3。1 W/TiO_2 纳米管光电极光催化性能
58—59
4.3。2 W/TiO_2 纳米管光电极光电催化性能
59
4.3。3 W/TiO_2 纳米管光电极稳定性研究
59-60
4。4 本章小结
60-62
第5章 W/TiO_2纳米管光电极光电催化降解壬基酚研究
62-71
5.1 W/TiO_2 纳米管光电极光电催化降解壬基酚效果研究
62-64
5.1.1 W/TiO_2 纳米管光电极光催化降解壬基酚研究
62-63
5.1.2 W/TiO_2 纳米管光电极光电催化降解壬基酚研究
63-64
5。2 W/TiO_2 纳米管光电极光催化与光电催化降解壬基酚效果比较
64—65
5。3 W/TiO_2 纳米管光电极光电催化降解壬基酚的影响因素
65—68
5。3。1 pH
65—66
5。3。2 壬基酚初始浓度
66-67
5.3.3 外加偏压
67-68
5.3。4 催化剂面积
68
5.4 壬基酚矿化过程分析
68—69
5.5 本章小结
69-71
结论
71-73
参考文献
73—80
攻读硕士学位期间发表的学术论文
80—83
致谢
83
本文为互联网收集,请勿用作商业用途本文为互联网收集,请勿用作商业用途
展开阅读全文