资源描述
第五章 相交线与平行线
一、选择题:(每小题3分,共30分)
1.若三条直线交于一点,则共有对顶角(平角除外)( )
A.6对 B.5对 C.4对 D.3对
2.如图1所示,∠1的邻补角是( )
图2
图3
A.∠BOC B.∠BOE和∠AOF C.∠AOF D.∠BOC和∠AOF
图1
3. 如图2,点E在BC的延长线上,在下列四个条件中,不能判定AB∥CD的是( )
A.∠1=∠2 B.∠B=∠DCE
C.∠3=∠4 D.∠D+∠DAB=180°
5. 如图3,AB∥CD,那么∠A,∠P,∠C的数量关系是( )
A.∠A+∠P+∠C=90° B.∠A+∠P+∠C=180°
C.∠A+∠P+∠C=360° D.∠P+∠C=∠A
6. 一个人从点A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于( )
A.75° B.105° C.45° D.135°
7.如图4正六边形ABCDEF所示,内错角共有( )
A.4对 B.6对 C.8对 D.10对
图4
图5
8.如图5所示,已知∠3=∠4,若要使∠1=∠2,则需( )
A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.AB∥CD
9.下列说法正确的个数是( )
①同位角相等; ②过一点有且只有一条直线与已知直线垂直;
③过一点有且只有一条直线与已知直线平行;;④三条直线两两相交,总有三个交点;
⑤若a∥b,b∥c,则a∥c.
A.1个 B.2个 C.3个 D.4个
二、填空题(每小题3分,共30分)
11.命题“垂直于同一直线的两直线平行”的题设是____________,结论是__________.
12.三条直线两两相交,最少有_____个交点,最多有______个交点.
13.观察图7中角的位置关系,∠1和∠2是______角,∠3和∠1是_____角,∠1和∠4是_______角,∠3和∠4是_____角,∠3和∠5是______角.
图9
图8
图7
14.如图8,已知AB∥CD,∠1=70°则∠2=_______,∠3=______,∠4=_______.
15.如图9所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:________________.
16.如图10所示,直线AB与直线CD相交于点O,EO⊥AB,∠EOD=25°,则∠BOD=______,∠AOC=_______,∠BOC=________.
图10 图11
17.如图11所示,四边形ABCD中,∠1=∠2,∠D=72°,则∠BCD=_______.
三、解答题(每小题8分,共40分)
21. 已知a、b、c是同一平面内的3条直线,给出下面6个命题:a∥b, b∥c,a∥c ,a⊥b,b⊥c,a⊥c,请从中选取3个命题(其中2个作为题设,1个作为结论)尽可能多地去组成一个真命题,并说出是运用了数学中的哪个道理。举例如下:
因为a∥b, b∥c,所以a∥c(平行于同一条直线的两条直线平行)
22. 如图,在方格中平移三角形ABC,使点A移到点M,点B,C应移动到什么位置?再将A由点M移到点N?分别画出两次平移后的三角形.如果直接把三角形ABC平移,使A点移到点N,它和前面先移到M后移到N的位置相同吗?
23. 已知:如图4, AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DEF的平分线相交于点P.求∠P的度数
24. 如图,E在直线DF上,B为直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由.
25. 已知AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2,猜想∠BDE与∠C有怎样的大小关系?试说明理由.
第五章 相交线与平行线参考答案:
一、
题号
1
2
3
4
5
6
7
8
9
10
答案
A
B
C
B
C
C
B
D
B
B
二、
11.两条直线都和同一条直线垂直,这两条直线平行;
12.1,3 ;
13.邻补;对顶;同位;内错;同旁内;
14.70°,70°,110°;
15.垂线段最短;
16.65°,65°,115°;
17.108°;
18.平移;
19.8;
20.相等或互补;
三、
23. 如图,过点P作AB的平行线交EF于点G。
因为AB∥PG,所以∠BEP =∠EPG(两直线平行,内错角相等),
G
又EP是∠BEF的平分线,所以∠BEP =∠PEG,所以
∠BEP =∠EPG=∠PEG;同理∠PFD =∠GFP=∠GPF。
又因为AB∥CD,所以∠BEF+∠DFE=180º(两直线平行,同旁内角互补),
所以∠BEP+∠PFD=90º,故∠EPG+∠GPF=90º,即∠P=90º.
24. 解: ∠A=∠F.
理由是:
因为∠AGB=∠DGF,∠AGB=∠EHF,
所以∠DGF=∠EHF,
所以BD//CE,
所以∠C=∠ABD,
又∠C=∠D,所以∠D=∠ABD,
所以∠A=∠F.
25.略;
四、
26. 解:∠BDE=∠C.
理由:因为AD⊥BC,FG⊥BC (已知),
所以∠ADC=∠FGC=90°(垂直定义).
所以AD ∥FG(同位角相等,两直线平行).
所以∠1=∠3(两直线平行,同位角相等)
又因为∠1=∠2,(已知),
所以∠3=∠2(等量代换).
所以ED∥AC(内错角相等,两直线平行).
所以∠BDE=∠C(两直线平行,同位角相等).
27. 解 若P点在C、D之间运动时,则有∠APB=∠PAC+∠PBD.理由是:如图4,过点P作PE∥l1,则∠APE=∠PAC,又因为l1∥l2,所以PE∥l2,所以∠BPE=∠PBD,所以∠APE+∠BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.
若点P在C、D两点的外侧运动时(P点与点C、D不重合),则有两种情形:
(1)如图1,有结论:∠APB=∠PBD-∠PAC.理由是:过点P作PE∥l1,则∠APE=∠PAC,又因为l1∥l2,所以PE∥l2,所以∠BPE=∠PBD,所以∠APB=∠BAE+∠APE,即∠APB=∠PBD-∠PAC.
(2)如图2,有结论:∠APB=∠PAC-∠PBD.理由是:过点P作PE∥l2,则∠BPE=∠PBD,又因为l1∥l2,所以PE∥l1,所以∠APE=∠PAC,所以∠APB=∠APE+∠BPE,即∠APB=∠PAC+∠PBD.
E
图1
C
D
l2
P
l3
l1
A
B
E
图2
C
D
l2
P
l3
l1
A
B
3
展开阅读全文