1、新疆工业高等专科学校毕业设计(论文)金源煤矿贯通测量方案设计作者姓名:李向前系 别: 采矿工程系 专业班级: 09级工程测量技术 指导教师: 蔡文惠 完成日期: 2012.4.15 目 录前言11 金源矿区概况21.1 区域构造位置以及特征21.2 井田构造特征22 贯通测量概述32.1 贯通测量32.2 井巷贯通允许偏差和误差预计参数42.2.1 贯通允许偏差的确定42.2.2 贯通测量误差预计43 第一贯通方案83.1 贯通测量方法83.2 贯通误差预计113.3减小误差措施144 第二贯通方案154.1 贯通测量方法154.1.1 平面控制测量方案:154.1.2 地下控制测量方案174
2、.1.3 矿井联系测量方案174.1.4 地面及井下高程控制测量方案194.1.5 导入高程方案194.2 贯通误差预计194.2.1地面采用GPS布网时的贯通误差194.2.2 地下控制方案205 最优方案的选择245.1 在平面控制方面245.2 在井下控制方面246 结论和建议26致谢27参考文献282辽宁工程技术大学毕业设计(论文)28新疆工业高等专科学校工程测量专科毕业设计(论文)前 言贯通测量,尤其是大型巷道贯通测量是矿山测量工作的一项重要工作,贯通工程质量的好坏,直接关系到整个矿井的建设、生产和经济效益,为了加快矿井的建设速度、缩短建井周期、保证正常的生产接替和提高矿井产量,经常
3、采用多井口或多头掘进,这样就会出现两井间或井田的长距离巷道贯通测量,所以两井间贯通测量就成为了矿井生产中必不可少的一项工作4。近50年来,随着电子技术、计算机技术、光机技术和通讯技术的发展,测绘仪器制造也得到了长足进展,其高科技产品代表之一就是电子全站仪。全站仪是当前比较流行,也比较实用的测绘仪器。应用全站仪与传统的科技手段和地质勘探技术理论相结合,在矿山勘探、设计、开发和生产运营的各个阶段,对矿区地面和地下的空间、资源和环境信息进行采集、存储、处理、显示、利用,将极大地提高资源勘探的效率,降低成本,减少人力物力,使矿区开采更加有效地进行。国际上矿山测量仪器正向着多功能、小型化、数字化和全自动
4、化方向发展。目前国内外两井贯通理论比较成熟,两井间贯通必须遵循以下原则:1.在确定测量方案和方法时,应保证贯通所必须得精度,过高和过低得精度要求都是不可取得。2.对完成得测量和计算工作均要有客观得检查,如:进行不少于两次独立测量;计算由两人分别进行或采取不同得方法,不同计算工具等。在此,我们做了芦北矿两井贯通测量。矿井的顺利贯通加快了了矿井的建设速度,缩短了建井的周期、保证了正常的生产交替并且提高了矿井的年产量。.1 金源矿区概况金源煤矿是神华新疆公司投资新建的大型现代化矿井,金源煤矿位于呼图壁县城西南70 km处,行政区划归新疆维吾尔自治区昌吉回族自治州呼图壁县雀尔沟镇管辖。乌鲁木齐-伊宁市
5、国道312线100 km处大丰镇向南50km即可到金源矿区。金源矿区向北2-3 km有一条砂石路面国防公路,距乌鲁木齐市约95km,交通十分便利。建设规模为年产原煤500万吨。1.1 区域构造位置以及特征金源煤矿位于天山北簏的中低山区,地形复杂,山势陡峻,切割强烈。地形南高北低,南部基岩裸露,受近东西向白杨沟切割的影响,南部地形陡峻,向北地形逐渐变缓,形成近南北向的宽阔“V”字型冲沟。煤矿北部大都被第四系坡积物所覆盖,绿草植被发育。矿区标高为1877.90m-1185.0m,绝对高差692.90m,相对高差一般为200-350m。断层、褶曲轴向为北东,少数为北西。受山区气候的影响,矿区内气侯较
6、湿润。最低气温在1-2月份,-14.8-17.3,极值-34;最高气温在7-8月份,为23.4-25.8,极值40;昼夜温差大,一般为10。每年10月底开始结冻,冻土深度为1m,次年三月开始解冻。全年降水量少,蒸发量大,年平均降水量411.88mm,年平均蒸发量1590.1mm。风力不大,一般3-4级,西北风较多。1.2 井田构造特征区域大地构造位置归属准葛尔盆地南缘乌鲁木齐山前拗陷西段的中部,处于三屯河-宁家河单斜构造带上。地层由南向北,从老至新依次排列,倾向为北北东向单斜,倾角1025度。区域西南、东南部见有小型褶曲,对矿区构造无影响。 矿区受区域单斜构造的影响,总体形态为一向北倾的缓倾斜
7、单斜构造。在线以西,岩层倾向变化较大,在详查区西界倾向为352至线时倾向为30, 线至线,倾角由30变为24, 线以东倾向由24变为358,而地层倾角在矿区西界至线间变化为1819。详查区内未见断距大于30 m的断裂构造,由此可知详查区构造应属简单构造类型。2 贯通测量概述2.1 贯通测量采用两个或多个相向或同向的掘进工作面分段掘进巷道,使其按设计要求在预定地点彼此结合,叫做巷道贯通。在煤矿开采过程中,贯通测量是矿井建设发展的重要一环。由于贯通测量工作涉及地面和井下,不但要为矿山生产建设服务,也要为安全生产提供信息,以供管理者做出安全生产决策。贯通测量的任何疏忽都会影响生产,甚至可能导致事故的
8、发生。因此,贯通测量是一项非常重要的测量工作,测量人员所肩负的责任是十分重大的。如果因为贯通测量过程中发生错误而导致巷道未能正确贯通,或贯通后结合处的偏差值超限,都将影响巷道质量,甚至造成巷道报废,人员伤亡等严重后果,在经济和时间上给国家造成重大的损失。因此,要求测量人员一丝不苟,严肃认真对待贯通测量工作。贯通测量工作中一般应当遵循下列原则:(1)要在确定测量方案和测量方法时,保证贯通所必须的精度,既不能因精度过低而使巷道不能正确贯通,也不能因盲目追求过高精度而增加测量工作量和成本。(2)对所完成的每一步测量工作都应当有客观独立的检查校核,尤其要杜绝粗差。贯通测量工作的主要任务包括6:根据贯通
9、巷道的种类和允许偏差,选择合理的测量方案和测量方法。重要贯通工程,要进行贯通测量误差预计。根据选定的测量方案和测量方法进行各项测量工作的施测和计算,以求得贯通导线最终点的坐标和高程。各种测量和计算都必须有可靠的检核对贯通导线施测成果及定向精度进行必要的分析,并与误差估算时所采用的有关参数进行比较。若实测精度低于设计的要求,则应重测。根据求得的有关数据,计算贯通巷道的标定几何要素,并实地标定贯通巷道的中线和腰线根据掘进工作的需要,及时延长巷道的中线和腰线。定期进行检查测量和填图,并根据测量结果及时调整中线和腰线。巷道贯通后,应立即测量贯通实际偏差值,并将两边的导线连接起来,计算各项闭合差。还应对
10、最后一段巷道的中腰线进行调整。重要贯通工程完成后,应对测量工作进行精度分析,作出技术总结。2.2 井巷贯通允许偏差和误差预计参数2.2.1 贯通允许偏差的确定井巷贯通一般分为一井内巷道贯通、两井之间的巷道贯通和立井贯通3种类型。凡是由一条导线起算边开始,能够敷设井下导线到达贯通巷道两端的,均属于一井内的巷道贯通。两井间的巷道贯通,是指在巷道贯通前不能由一条起算边向贯通巷道的两端敷设井下导线,而只能由两个井口,通过地面联测、联系测量,再布设井下导线到待贯通巷道两端的贯通。立井贯通主要包括从地面及井下开凿的立井贯通和延深立井时的贯通1。贯通巷道接合处的偏差值,可能发生在3个方向上:(1) 水平面内
11、沿巷道中线方向上的长度偏差。(2) 水平面内垂直于巷道中线的左、右偏差。(3) 竖直面内垂直于巷道腰线的上、下偏差以上三种偏差中,第一种偏差只对贯通在距离上有影响,对巷道质量没有影响;后两种偏差和对于巷道质量有直接影响,所以又称为贯通重要方向的偏差。井巷贯通的允许偏差值,主要根据工程的需要,按井巷的种类、用途、施工方法及测量工作所能达到的精度确定。在一般情况下可以采用如下数值:平巷或斜巷贯通时,平巷或斜巷贯通式,中线间的允许偏差可采用0.3-0.5m,腰线间的允许偏差值可采用0.2m。立井贯通时,全断面开凿井同时砌永久井壁,井筒中心间的允许偏差可采用0.1m,小断面开凿时,可采用0.5m。立井
12、贯通全断面掘砌,并在破保护岩柱之前预安罐梁罐道时,井筒中心间允许偏差可采用0.015-0.03m。2.2.2 贯通测量误差预计井巷贯通工程的质量对矿井建设和生产有重大影响,因此必须按规程规定,认真进行设计和精心组织工程施工对于大型贯通工程最好采用以下方法:(1) 采用光电测距导线建立地面独立控制。(2) 采用陀螺全站仪进行矿井定向(3) 井下贯通导线应合理地加测陀螺定向边,并进行平差。2.3 两井间巷道贯通误差预计参数(1) 测量误差引起贯通相遇点K在水平重要方向上的误差预计公式 地面控制采用莱卡精密导线测量方案时的误差预计公式 测角误差的影响Mx上= (2-1) 量边误差的影响 (2-2)
13、或 (2-3)式中地面导线测角中误差; 各导线点与K点连线在y轴上的投影长度 导线量边误差; L导线边长; 两定向连接点的连线在x轴上的投影长度; 地面导线量边偶然误差系数; 地面导线量边系统误差系数; 各导线x轴之间的夹角。定向误差引起K点在x轴上的误差预计公式 (2-4)式中ma0定向误差,即井下导线起算边的坐标方位角中误差; Ry0井下导线起算点与K点连线在y轴上的投影长度。井下导线测量误差引起K点在x轴上的误差预计公式 测角误差的影响: (2-5)式中 m下井下导线测角中误差; Ry下井下导线各点与K点连线在y轴上的投影长度。若导线独立测量n次,则n次测量平均值的影响为:Mx下= (2
14、-6)量边误差的影响:Mxl下= (2-7)式中 为井下光电测距的两边误差 为导线各边与x轴的夹角各项误差引起K点在x轴上的总中误差预计公式MxK= (2-8)如果以上观测都独立进行两次的话那么MxK= (2-9)(2)测量误差引起贯通相遇点K在高程上的误差预计公式地面水准测量误差引起K点在高程上的误差预计公式规程规定,井口水准点的高程测量,应按地面四等水准测量的精度要求施测。四等水准支导线往返测的高程平均值的中误差为5:Mh上=(mm) (2-10)式中 L水准线路的单程长度,km 导入高程误差引起K点在高程上的误差预计公式Mh0= (2-11)式中h为两次独立导入高程的互差。规程规定h;h
15、为井筒深度。井下水准测误差引起K点在高程上的误差预计公式a. 按单位长度高差中误差估算:Mh= (2-12)式中 mh0单位长度高差中误差,系按实测资料求得的数值; R 水准路线的长度,kmb.按下表的精度要求估算:表2- 1井下四等水准误差表 Tab.2-1 Underground levels errors table水准支线往返测量的高差不符值(mm)闭、附和路线的高程允许闭合差(mm)井下水准测量的允许闭合差为(mm),所以一次(单程)独立测量的中误差为:Mh=(mm) (2-13)式中 R水准路线的长度,km 若进行n次独立测量,则n次测量平均值的中误差为: Mh = (2-14)斜
16、巷中高程测量引起的误差,按规程规定的限差推算,一次测量的高程中误差为: Mh = 50 (2-15)各项误差引起K点的高程上的总中误差预计公式MhK= (2-16)3 第一贯通方案3.1 贯通测量方法在地面两个近井点选用GTS-602全站仪进行测量,依据煤矿测量规程、三角高程测量规范,确定贯通容许误差为:垂直方向0.20m,水平方向0.5m(1)平面控制测量方案:地面控制网是地下工程特别是矿井贯通工程正确性的基础。地面控制测量的基本任务是根据地下工程特点和需要,在地面布设一定形状的控制网,并精密测定其地面位置。地面控制测量的目的是为了控制全局,限制测量误差的传递和积累,保障测量工作的相对精度8
17、。 施测方法:我们使用的是导线网,把导线布设成网形或闭合环形。5复测导线,施测等级四等,使用仪器为智能型全站仪,作业限差按照7经纬仪导线的限差来进行7。(2)地下控制测量方案:由于是在井下巷道中测量,所以不能像地面那样布置成三角或三边网、边角网,智能设立导线或导线网作为井下平面测量控制。所以,井下平面控制测量实际上就是导线测量,我们采用和井上控制测量相同的方法来进行井下平面控制测量。(3)矿井联系测量方案:为了将地面坐标导入井下,我们在主副井之间采用两井定向,具体做法如下:地面设立连接点、近井点K, 通过联系测量将地面的平面坐标、方位角及高程传递到井下永久点上,作为井下控制测量起始数据。井口水
18、准基点的高程测量,按四等水准测量的精度要求测设。作业限差如表3所示。表3-1水平方向观测要求及限差表 Tab.3-1 Horizontal observation requirements and Tolerance等级 仪器类型观测方法 测回数光学测微两次重合读数之差 半测回归零差 一测回内2C互差同一方向值各测回互差四等 J2 方向 93 8 13 9联系测量的具体做法如下图所示:图3-2两井定向示意图Fig.3-2 Two wells directional map在两个立井个悬挂一根垂球线A和B,由地面控制点布设导线测定两垂球线A、B的坐标,内业计算时,首先由地面测量结果求出两垂球线的
19、坐标,、,并计算出A、B连线的坐标方位角和长度 (3-1) (3-2)因地下定向水平的导线构成无定向导线,为解算出地下个点的坐标,假设A为假定坐标系的原点,A1边位假定坐标纵轴轴方向,由此可计算出地下各点 在假定坐标系中的坐标,并求出A、B连线在假定坐标系中的坐标方位角及长度,即= (3-3) (3-4) (3-5)式中H竖井深度R地球的平均曲率半径。应小于地面和地下连接测量中误差的2倍。则=依此可重要计算出地下各点的坐标,由于测量误差的影响,地下求出的B点坐标与地面测出的B点坐标存有差值。如果其相对闭合差符合测量所要求的精度时,可进行分配,因地面连接导线精度较高,可将坐标增量闭合差按边长或坐
20、标增量成比例反号分配给地下导线各坐标增量上。最后计算出地下各点的坐标。风井联系测量,我们采用了一井定向的方法。具体方法类似两井定向方法,不同之处在与一井定向采用一井内投入钢丝。(4)地面及井下高程控制测量方案:井下高程控制分为级和级控制, 级控制是为了建立井下高程测量的首级控制,其精度较高,基本上能满足贯通工程在高程方面的精度要求,级水准测量的精度较低,作为级水准点的加密控制,主要是为了满足矿井生产的需要。操作方法:利用全站仪进行四等测三角高程进行。施测前必须对所使用的仪器进行检校,检校完后将仪器架在测站上,中丝法对向观测三测回。井下高程测量使用的仪器、工具与地面高程测量基本一样, 测量等级:
21、五等电磁波测距三角高程。(5)井下导线高程测量方案:因为b1L25属于斜巷,所以我们采用三角高程测量,因为L25L1属于平巷,所以我们采用传统水准测量。(6)导入高程方案:为使地面与地下建立统一的高程系统,应通过斜井、平硐或竖井将地面高程传递到地下巷道中,该测量工作称为高程联系测量(也可称为导入高程)。因为是立井,所以我们才用的是长钢尺法导入高程。具体方法如下:将经过检定的钢尺挂上重锤(其重力应等于钢尺检定时的拉力),自由悬挂在井中。分别在地面与井下安置水准仪,首先在A、B点水准尺上读取读数a、b,然后在钢尺上读数m、n(注意,为了防止钢丝上下弹动产生读数误差,地面与地下应同时在钢尺上读数),
22、同时测定地面、地下的温度和。由此可求得B点高程: (3-6) 式中为钢尺改正数总和(包括尺长改正、温度改正、自重伸长改正)。其中钢尺温度改正计算时,应采用井上下实测温度的平均值。钢尺自重伸长改正计算公式为: (3-7) 式中钢尺长度,=m-n钢尺悬挂点至重锤端点间长度,即自由悬挂部分的长度;钢尺的密度,r=7.8g/E钢尺的弹性模量,一般取为kg/当钢尺悬挂重量与钢尺检定时的拉力不相同的话,还应加入拉力改正。3.2 贯通误差预计因为我们测量采用的是GTS-602全站仪进行测量,它的测角中误差为2,测距精度为(2mm+2ppmD)m.s.e.(1) 贯通相遇点K在水平重要方向x上的误差预计:地面
23、光电测距导线的测角和测边误差引起K在x轴上的误差预计:根据该矿300条导线4个测回的实测资料分析:取测角中误差=测角误差的影响:Mx上=6161=0.149m因为进行的是两次独立测量所以测角误差的影响Mx平上=0.105m测边误差的影响 地面量边误差:按导线平均边长500m,按我们使用的GTS-602全站仪的测距标称精度取=0.002+2500=3mm具体的导线与X轴之间的角列表如下:为了避免图纸的混乱,我们没有在图上进行标出,我们在下表列出:表3-3 导线与X轴之间的夹角以及余弦值Tab.3-3 Conductors and the angle between the X axis and
24、the cosine编号1600914-0.9401800000-11952601-0.9641500926-0.8661974522-0.9521622345-0.9541025147-0.225960107-0.1051004704-0.187811103-0.156960918-0.1056433350.43133552270.914 由上表可计算出:量边误差引起的K点在x方向上的误差大小为:=0.008m因为进行的是两次独立测量,所以=0.006m定向误差引起K点在x轴上的误差预计:主副井两井独立两次定向平均值的误差所引起的K点的误差井下导线测量误差引起K点在x轴上的误差(角度独立测量
25、两次) m下井下导线测角中误差,我们这里取7测角误差:= =0.222m量边误差的影响: 按导线平均边长200m,根据仪器的标称精度ml下=0.002+210-6D=2.4mm。Mxl下=0.008m因为进行的是两次独立测量所以算术平均值的中误差为: Mxl下= =0.006m各项误差引起K点在x轴上的总中误差预计公式MxK=0.247m贯通在水平重要方向x上的预计误差(取2倍的中误差)m(2) 测量误差引起贯通相遇点K在高程上的误差预计公式按规程限差反算四等水准测量每1km的高差中误差=7mm地面水准测量误差引起的K点高程误差。即导入高程引起的K点高程误差。即井下三角高程测量引起的K点高程误
26、差m贯通在高程上的中误差(以上各项高程测量均独立进行两次)=0.063m贯通在高程上的误差预计。即(4)高程测量的误差主要来源于三角高程测量误差和高程导入所造成的,三角高程测量误差主要靠细心,比如用望远镜瞄准时要瞄准中心,水准管的气泡要居中,在巷道中测量时镜站的照明要好。而高程导入误差的主要来源有: 气流对垂球线和垂球线的作用 滴水对垂球线的影响 钢尺的弹性作用 垂球线的摆动面和标尺面不平行 垂球线的附生摆动3.3减小误差措施为了减小误差,我们采取了以下措施:(1)尽量增大两垂球线间的距离,并选择合理的垂球线位置。例如使两垂球线连线方向尽量与气流方向一致。这样尽管沿气流方向的垂球线倾斜可能较大
27、,但是最危险的方向(即垂直于两垂球线连线方向)上的倾斜却不大,因而可以减少投向误差。(2)适当加大垂球重量,这样可以减小晃动(3)摆动观测时,垂球线摆动的方向应尽量与标尺平行,并适当增大摆幅,但不宜超过100mm根据相关规程,要求贯通在水平方向上的误差小于0.5m,在高程方向上的误差小于0.2m,所以第一套预计方案满足要求,但是精度较差.4 第二贯通方案4.1 贯通测量方法4.1.1 平面控制测量方案:(1)施测方法:采用GPS进行平面控制。下面我们就介绍一下用GPS机型控制的特点:GPS测量的特点是对点间的边长没有限制,也不要求两点间通视,而且点位精度均匀。它与常规方法相比,具有很大的优越性
28、和灵活性,适合各种地下工程的地面控制测量,尤其适合山岭地区大型隧道和跨河,跨海隧道的地面控制测量2。(2)网点应满足一定的精度要求合理地确定施测精度标准,既能保证当前工程的需要,又留有适当的余地,同时考虑今后其他工程的可能需要,以便节省人力、物力,提案高工作效益,加快施测进度。(3)遵循统一的测量规范、按等级标准设计和作业GPS测量定位速度快、相对定位精度高、工作时间短、效益好,是现代的测量方法,必须遵循统一的测量规范,按等级标准设计和作业。国家质量技术监督局发布的全球定位系统(GPS)测量规范中,GPS按其精度划分为六个等级,见下表表4-1 GPS测量等级划分Table. 4-1 GPS g
29、rade classification级别固定误差/mm比例误差系数 A A30.01 A50.1 B81 C105 D1010 E1020工程控制网一般属D级或E级,相当于国家三等网和四等网。GPS网布设时,除了联测测区内高级GPS点外,不必按常规测量方式逐级布网,可根据实际需要,采用相应的等级规定一次完成全网的布点和施测。当测区内无高级GPS点时,可与测区内或附近的国家大地控制点连测。(4)网形设计GPS网形设计是施测方案的基础,它侧重考虑如何检核GPS数据质量和保证点位精度。为了检核GPS数据质量,GPS网应当构成闭合环状。闭合环有同步环和异步环之分。两台接收机同时观测相同的卫星,所得同
30、步观测资料可以解算出两站之间的一条基线响亮,将不同时段观测的各基线构成的闭合环叫做异步环。3台接收机同时观测相同的卫星,所得的同步观测资料解算出3个基线响亮构成三角形同步环路,其中只有两条是独立的,一般用K台接收机同步观测时,可解算出k(k-1)/2条基线响亮,其中只有k-1条是独立的。同样,由若干条独立基线构成的闭合环也叫异步环。同步环中由各基线向量构成的坐标闭合差之和等于零,否则基线解算结果有粗差。测量中通常用增加多条观测或附加条件的方法,采用最小二乘法进行平差,以提高点位的精度并增加其可靠性。由独立基线构成的闭合环或增加观测的时段数都可产生多余观测。多余观测数的计算是由独立基线数减去待定
31、点数。设计中总的观测点为m,用k台接收机,在各点做n次观测,则同步观测的次数s=mn/k,独立基线向量数b=(k-1)s=(k-1)mn/k.布设GPS网时应当由异步闭合构成区域性的子环路,然后由若干子环路在构成覆盖整个测区闭合的网环路。每个子环路可以作为施测方案分期观测的依据。每个子环路观测结束后,便可及时评定GPS数据质量。在GPS网设计时应进行时段设计。时段越长,越有可能选取图形强度较好的星组的观测数据。由于卫星的运动和测站随地球自转运动,卫星相对测站的几何图形在不断变化,星组中卫星更替造成时段的自然分段,每一个时段称为一个子时段。为了使观测能处于最佳时段,在技术设计时,可更具测站的概略
32、坐标及卫星星历作外推预报,计算出观测时一天的图形强度因子,找出间隙区,选择最佳观测时段。在GPS网设计时,应尽可能多与高级GPS控制点或国家测设的三角点、水准点进行连测,以便提供数据处理的基准值和成果测量的外部检核。4.1.2 地下控制测量方案 地下控制方案我们选择使用导线网作为井下平面测量控制,地下导线测量的作用是以必要的精度建立地下的控制系统,并依据该控制系统可以放样出隧道(或巷道)的掘 进方向。与地面导线测量相比,地下工程中的地下导线测量具有以下特点:1.由于受巷道的限制,其形状通常形成延伸状。地下导线不能一次布设完成,而是随着巷道的开挖而助教向前延伸。2.导线点有时设于巷道顶板,需采用
33、点下对中。3.的开挖,先敷设边长较短、精度较低的施工导线,指示巷道的掘进,而后敷设高等级导线对低等级导线进行检查校正。 4.地下工作环境较差,对导线测量干扰较大。(1)施测方法:采用与方案一相同的方法,即智能设立导线或导线网作为井下平面测量控制。所以,井下平面控制测量实际上就是导线测量。4.1.3 矿井联系测量方案联系测量:通过平硐、斜井以及立井将地面的平面坐标系统及高程系统传递到地下,使地面与地下建立统一的坐标系统,该项工作称为联系测量。联系测量工作的必要性在与:保证地下工程按照设计图纸正确施工,确保巷道的贯通。确定地下工程与地面建筑物、铁路、河湖等之间的相对位置关系,保证采矿工程安全生产,
34、同时及早采取预防措施,使地面建筑物、铁路免遭重大破坏。立井平面测量的任务是确定地下导线起算边的坐标方位角和地下导线起算点的平面坐标。高程联系测量的任务是评定地下高程基点的高程。其中测定地下导线起算边的坐标方位角是很重要的环节,而且它对导线终点位置的影响是很大的。我们通常将立井平面联系测量简称为立井定向10。方法二与方法一基本相同,但是在方案二中定向我们加测了陀螺边。在井下我们总共加了、四条陀螺边(具体见图纸)陀螺经纬仪是一种将陀螺仪和经纬仪解和结合在一起的仪器。它利用陀螺仪本身的物力特性及地球自转的影响,实现自动寻找真北方向,从而测定地面和地下工程中任意测站的大地方位角。在地理南北纬度不大于7
35、5度的范围内,它可以不受时间和环境等条件限制,实现快速定向。陀螺经纬仪的一次测定作业过程如下:在地面已知边上测定仪器常数以及待定边上测定陀螺方位角需进行多次,而每次的作业过程是相同的。该作业过程称为陀螺方位角的一次测定。其作业步骤如下:在测站上整平对中陀螺经纬仪,以一个测回测定待定边或已知边的方向值,然后将仪器大致对正北方。粗略定向(测定近似北方向)。锁紧灵敏部,启动陀螺马达,待达到额定转速后,下放陀螺灵敏部,用粗略定向的方法测定近似北方向。完毕后制动陀螺并托起锁紧,将望远镜视准轴转到近似北方向位置,固定照准部。测前悬带零位观测。打开陀螺照明,下放陀螺灵敏部,进行侧前悬带零位观测,同时用秒表记
36、录自摆周期T。零位观测完毕,托起并锁紧灵敏部。精密定向(精密测定陀螺北)。采用有扭观测方法(如逆转点法等)或无扭观测方法(如中天法、时差法、摆幅法等)精密测定已知边或待定边的陀螺方位角。测后悬带零位观测。以一个测回测定待定边或已知边的方向值,测前测后2次观测的方向值的互差和级经纬仪分别不得超过10和25。取测前测后观测值的平均值作为测线方向值。陀螺仪悬带零位观测当陀螺马达不转动并且灵敏部下放时,陀螺灵敏部受悬挂带和导流丝的扭力作用而产生摆动的平衡位置应与目镜分划板的零刻划线重合,该位置称为悬带零位(也称无扭位置)。如果摆动的平衡位置与目镜分划板的零刻划线不重合,则用“零”线来跟踪灵敏部时,悬挂
37、带上的扭矩不完全等于零,会使灵敏部的摆动中心发生偏移,将使测定的螺旋北方向带有误差。所以,在螺旋仪开始工作之前和结束后,均要进行悬带零位观测。测定悬带零位时,应将经纬仪整平并固定照准部,然后下陀螺灵敏部并从读数目镜中观测灵敏部的摆动(当陀螺仪较长时间末运转时,测定零位之前,应将马达开动几分钟预热,然后切断电源,待马达停止转动后再放下灵敏部),在分划板上连续读3个逆转点读数、(以格计),估读到0.1格。按下式计算零位如悬带零位超过0.5格就要进行校正,如陀螺定向时测前测后所得的零位变化超过0.3格时,应按公式加入零位改正数。4.1.4 地面及井下高程控制测量方案施测方法:方案二采取的是与方案一相
38、同的测量方法。4.1.5 导入高程方案 我们这里仍然采用长钢尺法导入高程,方法同方案一,在此不作赘述。4.2 贯通误差预计4.2.1地面采用GPS布网时的贯通误差在将GPS用于两井间巷道贯通测量时,可选用E级网或D级网精度来测设两井井口附近的近井点,而且两井近井点之间应尽量通视,如图纸所示,南梁、D为两井的近井点,K点为贯通相遇点,这时由于地面GPS测量误差所引起的K点在x轴方向上的贯通误差可按下列公式估算3式中近井点K和D之间的边长中误差,按计算a 固定误差,对于D级及E级GPS网,a10mm;b 比例误差系数,D级GPS网,b10;E级GPS网,b20;两近井点连线与贯通重要方向X轴之间的
39、夹角。按上面的式子在图中确定相应的参数则有:我们采用的GPS是天宝5700,所以其中的a=0.003m,b=0.5m所以=0.004m=0.0040.629=0.003m4.2.2 地下控制方案我们加测了三条陀螺边,b2b3、L28L27、L4L3、L1A三条陀螺边,其中b1b 3为支导线,而剩下L28L27、L4L3之间构成方向附合导线,L4L3、L1A构成方向附合导线我们将b1b3这条陀螺边称为S1,依次为S2、S3、S4。对于S2和S3之间的导线点,我们先将坐标原点移到导线的平均坐标点上,也就是导线的重心上,我们先将之间的导线点的坐标列表如下:表4-2各导线点的坐标Table. 4-2
40、The coordinates of the wire编号 XYL284848234.671729464744.2799L274848408.369029464744.5032L264848528.293729464744.2544L254848735.529729464744.8805L244848983.140029464744.7425L234848151.663529464744.4385L224848303.268029464744.4385L214848439.288429464744.7911 表4-3各导线点的坐标Table. 4-3The coordinates of the
41、 wire编号 XYL204848539.701529464744.5000L194848539.701529464453.1803L184848539.701529464163.1313L174848539.701529463871.1704L164848539.701529463579.9484L154848539.701229463288.0201L144848539.701529462996.4667L134848539.701529462705.2952 表4-4各导线点的坐标Table. 4-4The coordinates of the wire编号 XYL124848539.7
42、01529462414.1460L114848539.790329462123.3913L104848539.790329461831.5142L094848539.790329461539.6218L084848828.361729461539.7370L074848116.472329461539.7625L064848298.767229461539.4116L054848522.454829461539.4477L044848660.620129461540.0988L034848792.335629461539.7391由上表得出: =然后再图上找出这个点,然后将坐标原点平移到这个点。过这个点做出新的坐标轴称为,然后在图中作出从L28、L27L3到新轴的垂线(如图纸所示)对于S3和S4之间也如以上操作:表4-